Skip to main content


Log in

Using Science Gateways for Bridging the Differences between Research Infrastructures

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript


Researchers can perform large-scale analyses on diverse computing and data infrastructures such as NGIs (National Grid Infrastructures), XSEDE (Extreme Science and Engineering Discovery Environment) and PRACE (Partnership for Advanced Computing in Europe). Some are national like NGIs and XSEDE, some are international like PRACE and all of them require a more or less restrictive application process to get access to resources. Science gateways integrating diverse infrastructures provide the possibility to re-use methods independent of such underlying infrastructures and thus potentially deliver the technical prerequisite for creating reproducible science. To achieve this goal, science gateways have to be integrated seamlessly with security mechanisms and job, data as well as workflow management of the targeted resources. This paper gives an overview on general findings for porting science gateways as well as the challenges faced for porting the German MoSGrid science gateway (Molecular Simulation Grid) to exploit XSEDE and PRACE infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Krüger, J., Grunzke, R., Herres-Pawlis, S., Hoffmann, A., de la Garza, L., Kohlbacher, O., Nagel, W.E., Gesing, S.: Performance Studies on Distributed Virtual Screening. Biomed. Res. Int. 2014(624024), 7. doi:10.1155/2014/624024

  2. Rajasekar, A., Moore, R., Hou, C.-Y., Lee, C.A., Marciano, R., de Torcy, A., Wan, M., Schroeder, W., Chen, S.-Y., Gilbert, L., et al: iRODS primer: Integrated Rule-Oriented Data System, Synthesis Lectures on Information Concepts, Retrieval, and Services, Morgan & Claypool Publishers 2, 1–143 (2010)

  3. Fuhrmann, P.: dCache, the commodity cache, IEEE Mass Storage Systems and Technologies (2004)

  4. Plankensteiner, K., Prodan, R., Janetschek, M., Fahringer, T., Montagnat, J., Rogers, D., Harvey, I., Taylor, I., Balaskó, A., Kacsuk, P.: Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures. J. Grid Comput. 11, 429 (2013).

    Article  Google Scholar 

  5. SHIWA (SHaring Interoperable Workflows for Large-scale Scientic Simulations on Available DCIs). (2016)

  6. Gesing, S., Herres-Pawlis, S., Birkenheuer, G., Brinkmann, A., Grunzke, R., Kacsuk, P., Kohlbacher, O., Kozlovszky, M., Krüger, J., Müller-Pfefferkorn, R., Schäfer, P., Steinke, T.: A Science Gateway Getting Ready for Serving the International Molecular Simulation Community. In: Proceedings of Science, PoS(EGICF12-EMITC2)050 (2012)

  7. Zhao, J., Gomez-Perez, J.M., Belhajjame, K., Klyne, G., Garcia-Cuesta, E., Garrido, A., Hettne, K., Roos, M., De Roure, D., Goble, C.: Why workflows break understanding and combating decay in Taverna workflows. In: E-Science (e-Science), 2012 IEEE 8th International Conference on, pages 1–9. IEEE (2012)

  8. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Bacall, F., Hardisty, A., Nieva de la Hidalga, A., Balcazar Vargas, M.P., Sufi, S., Goble, C.: The taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 41(W1), W557—W561 (2013)

    Article  Google Scholar 

  9. Krüger, R., Grunzke, S., Gesing, S., Breuers, A., Brinkmann, L., de la Garza, O., Kohlbacher, M., Kruse, W.E., Nagel, L., Packschies, R., Müller-Pfefferkorn, P., Schäfer, C., Schärfe, T., Steinke, T., Schlemmer, K.D., Warzecha, A.Z., Herres-Pawlis, S.: The MoSGrid Science Gateway – A Complete Solution for Molecular Simulations. J. Chem. Theory Comput. 10(6), 2232–2245 (2014)

    Article  Google Scholar 

  10. XSEDE, (2016)

  11. PRACE, (2016)

  12. Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G., Balasko, A., Karoczkai, K., Marton, I.: WS-PGRADE/gUSE Generic DCI Gateway Framework for a Large Variety of User Communities. J. Grid Comput. 10, 601–630 (2012). Springer Netherlands

    Article  Google Scholar 

  13. Liferay: Enterprise open source portal and collaboration software, (2016)

  14. Benedyczak, K., Schuller, B., Petrova, M., Rybicki, J., Grunzke, R.: UNICORE 7 - Middleware Services for Distributed and Federated Computing. In: International Conference on High Performance Computing Simulation (HPCS), 2016, accepted

  15. Hupfeld, F., Cortes, T.i., Kolbeck, B., Stender, J., Focht, E., Hess, M., Malo, J., Marti, J., Cesario, E.: The XtreemFS Architecture - A Case for Object-based File Systems in Grids. Concurrency and Computation: Practice and Experience 20, 2049–2060 (2008)

    Article  Google Scholar 

  16. Grunzke, R., Gesing, S., Jäkel, R., Nagel, W.E.: Towards Generic Metadata Management in Distributed Science Gateway Infrastructures. In: IEEE/ACM CCGrid 2014(14th International Symposium on Cluster, Cloud and Grid Computing), pp 566–570 (2014)

  17. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W.E., Atkinson, M., Krüger, J.: Standards-based Metadata Management for Molecular Simulations, Concurrency and Computation: Practice and Experience, vol. 26 (2014)

  18. Noor, W., Schuller, B.: MMF: A flexible framework for metadata management in UNICORE. In: UNICORE Summit 2010 Proceedings, 2010, 5, 51–60

  19. Apache Lucene: Java-based indexing and search technology, (2015)

  20. Mattmann, C., Zitting, J.: Tika in action, Manning Publications Co. (2011)

  21. Gesing, S., Grunzke, R., Krüger, J., Birkenheuer, G., Wewior, M., Schäfer, P., Schuller, B., Schuster, J., Herres-Pawlis, S., Breuers, S., Balaskó, Á., Kozlovszky, M., Fabri, A. S., Packschies, L., Kacsuk, P., Blunk, D., Steinke, T., Brinkmann, A., Fels, G., Müller-Pfefferkorn, R., Jäkel, R., Kohlbacher, O.: A Single Sign-On Infrastructure for Science Gateways on a Use Case for Structural Bioinformatics. J. Grid Comput. 10, 769 (2012)

    Article  Google Scholar 

  22. Samual, T.K., Wan, S., Conveney, P.V., Riedel, M., Memon, S., Gesing, S., Wilkins-Diehr, N.: Overview of XSEDE-PRACE Collaborative Projects in 2014. In: Proceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure (XSEDE ’15). ACM, New York, NY, USA,, Article 24, 8 pages. doi:10.1145/2792745.2792769 (2015)

  23. Goecks, J., Nekrutenko, A, Taylor, J., The Galaxy Team: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11(8), R86 (2010)

    Article  Google Scholar 

  24. Suresh, M., Gunathilake, L., Herath, C., Tangchaisin, P., Pierce, M., Mattmann, C., Singh, R., et al.: Apache airavata: a framework for distributed applications and computational workflows. In: Proceedings of the 2011 ACM workshop on Gateway computing environments, pp. 21-28. ACM (2011)

  25. Kacsuk, P. (ed.): Science Gateways for Distributed Computing Infrastructures: Development Framework and Exploitation by Scientific User Communities, Springer, 2014. pp. 301 (ISBN:978-3-319-11267-1)

  26. ENVRIplus, (2016)

  27. Kissling, W.D., Hardisty, A., García, E.A., Santamaria, M., De Leo, F., Pesole, G., Freyhof, J., Manset, D., Wissel, S., Konijn, J., Los, W.: Towards global interoperability for supporting biodiversity research on Essential Biodiversity Variables (EBVs). Biodiversity 16, 99–107 (2015)

    Article  Google Scholar 

  28. gUSE, (2016)

  29. Morgan, M., Grimshaw, A.: Genesis II - Standards Based Grid Computing. In Seventh IEEE International Symposium on Cluster Computing and the Grid. IEEE Computer Society, Rio de Janario, Brazil (2007)

  30. The IDB. (2016)

  31. XSEDE Science Gateways, (2016)

  32. GridChem, (2016)

  33. Demeler, B.: UltraScan A Comprehensive Data Analysis Software Package for Analytical Ultracentrifugation Experiments. Modern Analytical Ultracentrifugation: Techniques and Methods. In: Scott, D.J., Harding, S.E., Rowe, A.J. (eds.) . Royal Society of Chemistry (UK) (2005) 210–229

  34. ROSIE, (2016)

  35. Li, L., Bum-Erdene, K., Baenziger, P.H., Rosen, J.J., Hemmert, J.R., Nellis, J.A., Pierce, M.E., Meroueh, S.O.: BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome. Nucleic Acids Res. 38(Database issue), D765–73 (2010)

    Article  Google Scholar 

  36. Jo, S., Cheng, X., Islam, S.M., Huang, L., Rui, H., Zhu, A., Lee, H.S., Qi, Y., Han, W., Vanommeslaeghe, K., MacKerell Jr, A.D., Benoît Roux, W.I.: CHARMM-GUI PDB Manipulator for Advanced Modeling and Simulations of Proteins Containing Nonstandard Residues. Adv. Protein Chem. Struct. Biol. 96, 235–265 (2014)

    Article  Google Scholar 

  37. ParamChem. (2016)

  38. InCommon. (2016)

  39. Docker. (2016)

  40. Jesser, A, Rohrmüller, M, Schmidt, W G, Herres-Pawlis, S: Geometrical and optical benchmarking of copper guanidine–quinoline complexes: Insights from TD-DFT and many-body perturbation theory. J. Comput. Chem. 35, 1–17 (2014). doi:10.1002/jcc.23449

    Article  Google Scholar 

  41. Hoffmann, A., Grunzke, R., Herres-Pawlis, S.: Insights into the influence of dispersion correction in the theoretical treatment of guanidine-quinoline copper(I) complexes. J. Comput. Chem. 35, 1943–1950 (2014). doi:10.1002/jcc.23706

    Article  Google Scholar 

  42. Hoffmann, A., Rohrmüller, M., Jesser, A., dos Santos Vieira, I., Schmidt, W.G., Herres-Pawlis, S.: Geometrical and optical benchmarking of copper(II) guanidine–quinoline complexes: Insights from TD-DFT and many-body perturbation theory (part II). J. Comput. Chem. 35, 2146–2161 (2014). doi:10.1002/jcc.23740

    Article  Google Scholar 

  43. Valiev, M., Bylaska, E.J., Govind, N., Kowalski, K., Straatsma, T.P., Van Dam, H.J.J., Wang, D., Nieplocha, J., Apra, E., Windus, T.L., de Jong, W.A., de Jong, A.: NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181(9), 1477–1489 (2010)

    Article  MATH  Google Scholar 

  44. Gaussian Inc. Gaussian 03, Revision C.02 (2004)

  45. Hoffmann, A., Gesing, S., de la Garza, L., Krüger, J., Grunzke, R., Weingarten, N., Terstyansky, G., Herres-Pawlis, S.: Meta-metaworkflows for Combining Quantum Chemistry and Molecular Dynamics in the MoSGrid Science Gateway. In: IEEE Xplore - Proceedings 6th International Workshop on Science Gateways (IWSG), pp 73–78 (2014)

  46. Herres-Pawlis, S., Hoffmann, A., Balasko, A., Kacsuk, P., Birkenheuer, G., Brinkmann, A., de la Garza, L., Krüger, J., Gesing, S., Grunzke, R., Terstyansky, G., Weingarten, N.: Quantum chemical metaworkflows in MoSGrid. Concurrency Computat.: Pract. Exper. 27, 344–57 (2015)

    Article  Google Scholar 

  47. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., Lindahl, E.: GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7), 845–54 (May 2013)

    Article  Google Scholar 

  48. Kohlbacher, O.: CADDSuite - a workflow-enabled suite of open-source tools for drug discovery 4 (2012). no. Suppl 1, p. O2 +

  49. Hildebrandt, A., Dehof, A.K., Rurainski, A., Bertsch, A., Schumann, M., Toussaint, N.C., Moll, A., Stöckel, D., Nickels, S., Mueller, S.C., Lenhof, H.-P., Kohlbacher, O.: BALL–biochemical algorithms library 1.3. BMC Bioinformatics 11(1), 531 (2010)

    Article  Google Scholar 

  50. Hildebrandt, K., Stöckel, D., Fischer, N.M., de la Garza, L., Krüger, J., Nickels, S., Röttig, M., Schärfe, C., Schumann, M., Thiel, P., Lenhof, H.-P., Kohlbacher, O., Hildebrandt, A.: ballaxy: web services for structural bioinformatics. Bioinformatics (2014)

  51. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.: Open Babel: An open chemical toolbox. J. Cheminform. 3(1), 33 (2011)

    Article  Google Scholar 

  52. Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010)

    Google Scholar 

  53. Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A Fast Flexible Docking Method Using an Incremental Construction Algorithm. J. Mol. Biol. 261, 470–489 (1996)

    Article  Google Scholar 

  54. Landesman, B.: Seeing Standards: A Visualization of the Metadata Universe, Technical Services Quarterly,, 2011, 28, 459–460

  55. Grunzke, R., Gesing, S., Jäkel, R., Nagel, W.E.: Towards Generic Metadata Management in Distributed Science Gateway Infrastructures. In: IEEE/ACM CCGrid 2014(14th International Symposium on Cluster, Cloud and Grid Computing), pp 566–570 (2014)

  56. Grunzke, R., Breuers, S., Gesing, S., Herres-Pawlis, S., Kruse, M., Blunk, D., de la Garza, L., Packschies, L., Schäfer, P., Schärfe, C., Schlemmer, T., Steinke, T., Schuller, B., Müller-Pfefferkorn, R., Jäkel, R., Nagel, W.E., Atkinson, M., Krüger, J.: Standards-based Metadata Management for Molecular Simulations, Concurrency and Computation: Practice and Experience, vol. 26 (2014)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sandra Gesing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gesing, S., Krüger, J., Grunzke, R. et al. Using Science Gateways for Bridging the Differences between Research Infrastructures. J Grid Computing 14, 545–557 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: