Journal of Grid Computing

, Volume 14, Issue 2, pp 299–325 | Cite as

Energy Efficient Cloud Service Provisioning: Keeping Data Center Granularity in Perspective

  • Leila Sharifi
  • Llorenç Cerdà-Alabern
  • Felix Freitag
  • Luís Veiga
Article

Abstract

The cost of power and its associated delivery are becoming significant factors in the total expenditure of large-scale data centers. Numerous techniques have been proposed to address the energy efficiency issue in cloud systems. Recently, some efforts have been made to decentralize the cloud via distributing data centers in diverse geographical positions, at different scales. In this paper, we elaborate on the energy effectiveness of service provisioning on different cloud architectures, from a mega-data center to a nano data center, which provides the extreme decentralization in terms of cloud architecture, as well as P2P-clouds or community network clouds. We study the energy consumption through an analytical and simulation framework for video streaming and MapReduce applications.

Keywords

Energy effectiveness Cloud architecture Data center granularity Virtual data center P2P-cloud 

References

  1. 1.
    Khosravi, A., Garg, S.K., Buyya, R.: Energy and carbon-efficient placement of virtual machines in distributed cloud data centers. In: Euro-Par 2013 Parallel Processing, pp 317–328. Springer (2013)Google Scholar
  2. 2.
    Kertesz, A., Dombi, J., Benyi, A.: A pliant-based virtual machine scheduling solution to improve the energy efficiency of iaas clouds. Journal of Grid Computing, 1–13 (2015)Google Scholar
  3. 3.
    de Carvalho, O.A.Jr., Bruschi, S.M., R.Santana, H.C., Santana, M.J.: Green cloud meta-scheduling. Journal of Grid Computing, 1–18Google Scholar
  4. 4.
    Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An energy-efficient task scheduling algorithm in dvfs-enabled cloud environment. Journal of Grid Computing, 1–20 (2015)Google Scholar
  5. 5.
    Pascual, J.A., Lorido-Botrán, T., Miguel-Alonso, J., Lozano, J.A.: Towards a greener cloud infrastructure management using optimized placement policies. Journal of Grid Computing, 1–15 (2014)Google Scholar
  6. 6.
    Ebrahimirad, V., Goudarzi, M., Rajabi, A.: Energy-aware scheduling for precedence-constrained parallel virtual machines in virtualized data centers. Journal of Grid Computing 13(2), 233–253 (2015)CrossRefGoogle Scholar
  7. 7.
    Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Practice and Experience 24(13), 1397–1420 (2012)CrossRefGoogle Scholar
  8. 8.
    Baliga, J., Ayre, R.W., Hinton, K., Tucker, R.: Green cloud computing: Balancing energy in processing, storage, and transport. In: Proceedings of the IEEE, vol. 99, pp 149–167 (2011)Google Scholar
  9. 9.
    Bilal, K., S.Malik, U.R., Khalid, O., Hameed, A., Alvarez, E., Wijaysekara, V., Irfan, R., Shrestha, S., Dwivedy, D., Ali, M.: A taxonomy and survey on green data center networks, Future Generation Computer Systems (2013)Google Scholar
  10. 10.
    Hammadi, A., Mhamdi, L.: A survey on architectures and energy efficiency in data center networks. Comput. Commun. 40, 1–21 (2014)CrossRefGoogle Scholar
  11. 11.
    Gyarmati, L., Trinh, T.A.: How can architecture help to reduce energy consumption in data center networking. In: Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking. ACM, pp 183–186 (2010)Google Scholar
  12. 12.
    Doyle, J., Shorten, R., O’Mahony, D.: Stratus: Load balancing the cloud for carbon emissions control. IEEE Transaction on Cloud Computing (2013)Google Scholar
  13. 13.
    Moghaddam, F.F., Cheriet, M., Nguyen, K.K.: Low carbon virtual private clouds. In: Cloud Computing (CLOUD), pp 259–266 (2011)Google Scholar
  14. 14.
    Subirats, J., Guitart, J.: Assessing and forecasting energy efficiency on cloud computing platforms. Future Generation Computer Systems (2014)Google Scholar
  15. 15.
    Alicherry, M., Lakshman, T.: Network aware resource allocation in distributed clouds. In: INFOCOM, 2012 Proceedings IEEE. IEEE, pp 963–971 (2012)Google Scholar
  16. 16.
    Akamai cloud computing services and content delivery network. http://akamai.com
  17. 17.
  18. 18.
    Valancius, V., Laoutaris, N., Massoulié, L., Diot, C., Rodriguez, P.: Greening the internet with nano data centers. In: Proceedings of the 5th international conference on Emerging networking experiments and technologies. ACM, pp 37–48 (2009)Google Scholar
  19. 19.
    Supermicro microcloud solution. http://www.supermicro.com/
  20. 20.
    Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.: Bcube: a high performance, server-centric network architecture for modular data centers. ACM SIGCOMM Computer Communication Review 39(4), 63–74 (2009)CrossRefGoogle Scholar
  21. 21.
    Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing. ACM, pp 13–16 (2012)Google Scholar
  22. 22.
    Braem, B., Blondia, C., Barz, C., Rogge, H., Freitag, F., Navarro, L., Bonicioli, J., Papathanasiou, S., Escrich, P., Viñas Baig, R.: A case for research with and on community networks. ACM SIGCOMM Computer Communication Review 43(3), 68–73 (2013)CrossRefGoogle Scholar
  23. 23.
    Mell Peter, T.G.: The nist definition of cloud computing, Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 (2011)Google Scholar
  24. 24.
    Khan, A.M., Sharifi, L., Veiga, L., Navarro, L.: Clouds of Small Things: Provisioning Infrastructure-as-a-Service from within Community Networks. In: 2nd International Workshop on Community Networks and Bottom-up-Broadband (CNBuB 2013), within IEEE WiMob, Lyon, France (2013)Google Scholar
  25. 25.
    Choi, S., Kim, H., Byun, E., Baik, M., Kim, S., Park, C., Hwang, C.: Characterizing and classifying desktop grid. In: Cluster Computing and the Grid, CCGRID 2007. IEEE, pp 743–748 (2007)Google Scholar
  26. 26.
    Zhiqun, X., Duan, C., Zhiyuan, H., Qunying, S.: Emerging of telco cloud. Communications, China 10(6), 79–85 (2013)CrossRefGoogle Scholar
  27. 27.
    Liu, Y., Xiao, L., Liu, X., Ni, L.M., Zhang, X.: Location awareness in unstructured peer-to-peer systems. IEEE Trans. Parallel Distrib. Syst. 16(2), 163–174 (2005)CrossRefGoogle Scholar
  28. 28.
    Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutorials 7(1-4), 72–93 (2005)Google Scholar
  29. 29.
    Kalogeraki, V., Gunopulos, D., Zeinalipour-Yazti, D.: A local search mechanism for peer-to-peer networks. In: Proceedings of the eleventh international conference on Information and knowledge management. ACM, pp 300–307 (2002)Google Scholar
  30. 30.
    Hefeeda, M., Saleh, O.: Traffic modeling and proportional partial caching for peer-to-peer systems. IEEE/ACM Trans. Networking 16(6), 1447–1460 (2008)CrossRefGoogle Scholar
  31. 31.
    Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. In: ACM SIGCOMM Computer Communication Review. ACM, vol. 38, pp 63–74 (2008)Google Scholar
  32. 32.
    Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D.A., Patel, P., Sengupta, S.: Vl2: a scalable and flexible data center network. In: ACM SIGCOMM Computer Communication Review. ACM, vol. 39, pp 51–62 (2009)Google Scholar
  33. 33.
    Revolutonizing network design flattening the data center network with the qfabric architecture, http://www.itbiz.com.ua/media/docs/juniper/qfx/the%20q%fabric%20architecture.pdf
  34. 34.
    Huang, L., Jia, Q., Wang, X., Yang, S., Li, B.: Pcube: Improving power efficiency in data center networks. In: Cloud Computing (CLOUD), 2011 IEEE International Conference on. IEEE, pp 65–72 (2011)Google Scholar
  35. 35.
    Costa, P., Donnelly, A., O’Shea, G., Rowstron, A.: Camcubeos: a key-based network stack for 3d torus cluster topologies. In: Proceedings of the 22nd international symposium on High-performance parallel and distributed computing. ACM, pp 73–84 (2013)Google Scholar
  36. 36.
    Clos, C.: A study of non-blocking switching networks. Bell System Technical Journal 32(2), 406–424 (1953)CrossRefGoogle Scholar
  37. 37.
    Abts, D., Marty, M.R., Wells, P.M., Klausler, P., Liu, H.: Energy proportional datacenter networks. ACM, vol. 38, pp 338–347 (2010)Google Scholar
  38. 38.
    D. Lin, Y. Liu, M. Hamdi, J. Muppala: Flatnet: Towards a flatter data center network. In: Global Communications Conference (GLOBECOM), 2012. IEEE. IEEE, pp 2499–2504 (2012)Google Scholar
  39. 39.
    Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: Dcell: a scalable and fault-tolerant network structure for data centers. ACM SIGCOMM Computer Communication Review 38(4), 75–86 (2008)CrossRefGoogle Scholar
  40. 40.
    Wang, G., Andersen, D.G., Kaminsky, M., Papagiannaki, K., Ng, T., Kozuch, M., Ryan, M.: c-through: Part-time optics in data centers. ACM SIGCOMM Computer Communication Review 40 (4), 327–338 (2010). ACMCrossRefGoogle Scholar
  41. 41.
    Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H.H., Subramanya, V., Fainman, Y., Papen, G., Vahdat, A.: Helios: a hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM Computer Communication Review 41(4), 339–350 (2011)Google Scholar
  42. 42.
    Belady, C., Rawson, A., Pfleuger, J., Cader, T.: Green grid data center power efficiency metrics: Pue and dcie. In: Technical, report,Green Grid, Tech. Rep. (2008)Google Scholar
  43. 43.
    Bertran, R., Becerra, Y., Carrera, D., Beltran, V., Tallada Gonzalez, M., Martorell, X., Torres, J., Ayguade, E.: Accurate energy accounting for shared virtualized environments using pmc-based power modeling techniques. In: Grid Computing (GRID), 2010 11th IEEE/ACM International Conference on. IEEE, pp 1–8 (2010)Google Scholar
  44. 44.
    Schubert, S., Kostic, D., Zwaenepoel, W., Shin, K.G.: Profiling software for energy consumption. In: Green Computing and Communications (GreenCom), IEEE International Conference on. IEEE, vol. 2012, pp 515–522 (2012)Google Scholar
  45. 45.
    Wong, D., Annavaram, M.: Knightshift: Scaling the energy proportionality wall through server-level heterogeneity. In: Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium on. IEEE, pp 119–130 (2012)Google Scholar
  46. 46.
  47. 47.
    Tolia, N., Wang, Z., Marwah, M., Bash, C., Ranganathan, P., Zhu, X.: Delivering energy proportionality with non energy-proportional systems-optimizing the ensemble. HotPower 8, 2–2 (2008)Google Scholar
  48. 48.
    Makkes, M.X., Taal, A., Osseyran, A., Grosso, P.: A decision framework for placement of applications in clouds that minimizes their carbon footprint. Journal of Cloud Computing 2(1), 1–13 (2013)Google Scholar
  49. 49.
  50. 50.
    Vasic, N., Scherer, T., Schott, W.: Thermal-aware workload scheduling for energy efficient data centers. In: Proceedings of the 7th international conference on Autonomic computing. ACM, pp 169–174 (2010)Google Scholar
  51. 51.
    Open, Free and Neutral Network Internet for everybody. http://guifi.net/en
  52. 52.
    Athens Wireless Metropolitan Network. http://www.awmn.net
  53. 53.
    FunkFeuer free net. http://www.funkfeuer.at
  54. 54.
  55. 55.
    Garcia-Saavedra, A., Serrano, P., Banchs, A., Bianchi, G.: Energy consumption anatomy of 802.11 devices and its implication on modeling and design. In: Proceedings of the 8th international conference on Emerging networking experiments and technologies. ACM, pp 169–180 (2012)Google Scholar
  56. 56.
    Baliga, J., Hinton, K., Tucker, R.S.: Energy consumption of the internet. In: Joint International Conference on Optical Internet, and the 32nd Australian Conference on Optical Fibre Technology. COIN-ACOFT 2007. IEEE, pp 1–3 (2007)Google Scholar
  57. 57.
    Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services. Futur. Gener. Comput. Syst 29(4), 1012–1023 (2013)CrossRefGoogle Scholar
  58. 58.
    da Silva Dias Rodrigues, P., da Cruz Ribeiro, C.N., Veiga, L.: Incentive mechanisms in peer-to-Peer networks. In: 15th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric Systems (DPDNS), 24th IEEE International Parallel & Distributed Processing Symposium (IPDPS2010). IEEE Press (2010)Google Scholar
  59. 59.
    Simão, J., Veiga, L.: Flexible SLAs in the cloud with partial utility-driven scheduling. In: IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom 2013). IEEE, p 2013Google Scholar
  60. 60.
    Simão, J., Veiga, L.: VM economics for java cloud computing - an adaptive and resource-aware java runtime with quality-of-Execution. In: The 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2012) Doctoral Symposium Cloud Scheduling, Clusters and Data Centers. IEEE (2012)Google Scholar
  61. 61.
    Roy, S., Rudra, A., Verma, A.: An energy complexity model for algorithms. In: Proceedings of the 4th conference on Innovations in Theoretical Computer Science. ACM, pp 283–304 (2013)Google Scholar
  62. 62.
  63. 63.
    Quick Mesh Project. http://qmp.cat
  64. 64.
    Community Networks Testbed for the Future Internet, CONFINE. http://confine-project.eu/,FP7EuropeanProject288535
  65. 65.
    Cerd-Alabern, L., Neumann, A., Escrich, P.: Experimental evaluation of a wireless community mesh network. In: The 16th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM’13. Barcelona, Spain: ACM, pp 3–8 (2013)Google Scholar
  66. 66.
    qMp Sants-UPC monitoring web page. http://dsg.ac.upc.edu/qmpsu
  67. 67.
    OpenWrt Linux distribution for embedded devices. https://openwrt.org
  68. 68.
    Yang, H., Luan, Z., Li, W., Qian, D.: Mapreduce workload modeling with statistical approach. Journal of grid computing 10(2), 279–310 (2012)CrossRefGoogle Scholar
  69. 69.
    Pouwelse, J., Langendoen, K., Lagendijk, R., Sips, H.: Power-aware video decoding. In: 22nd Picture Coding Symposium, Seoul, Korea, pp 303–306 (2001)Google Scholar
  70. 70.
    Amazon cloud front live streaming service. http://docs.aws.amazon.com/amazoncloudfront/
  71. 71.
  72. 72.
    Mok, R.K., Chan, E.W., Chang, R.K.: Measuring the quality of experience of http video streaming. In: Integrated Network Management (IM), 2011 IFIP/IEEE International Symposium on. IEEE, vol. 2011, pp 485–492Google Scholar
  73. 73.
    Chun, B.-G., Iannaccone, G., Iannaccone, G., Katz, R., Lee, G., Niccolini, L.: An energy case for hybrid datacenters, vol. 44 (2010)Google Scholar
  74. 74.
    Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. IEEE computer 40(12), 33–37 (2007)CrossRefGoogle Scholar
  75. 75.
    Payberah, A.H., Kavalionak, H., Kumaresan, V., Montresor, A., Haridi, S.: Clive: Cloud-assisted p2p live streaming. In: Peer-to-Peer Computing (P2P), 2012 IEEE 12th International Conference on. IEEE, vol. 2012, pp 79–90Google Scholar
  76. 76.
    Sharifi, L., Rameshan, N., Freitag, F., Veiga, L.: Energy efficiency dilemma: P2p-cloud vs. datacenter (2014)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Leila Sharifi
    • 1
    • 2
  • Llorenç Cerdà-Alabern
    • 2
  • Felix Freitag
    • 2
  • Luís Veiga
    • 1
  1. 1.Instituto Superior Técnico / INESC-ID Lisboa, Universidade de LisboaLisboaPortugal
  2. 2.Computer Architecture DepartmentUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations