Advertisement

Journal of Grid Computing

, Volume 14, Issue 3, pp 429–441 | Cite as

Subdividing Long-Running, Variable-Length Analyses Into Short, Fixed-Length BOINC Workunits

Open Access
Article

Abstract

We describe a scheme for subdividing long-running, variable-length analyses into short, fixed-length boinc workunits using phylogenetic analyses as an example. Fixed-length workunits decrease variance in analysis runtime, improve overall system throughput, and make boinc a more useful resource for analyses that require a relatively fast turnaround time, such as the phylogenetic analyses submitted by users of the garli web service at molecularevolution.org. Additionally, we explain why these changes will benefit volunteers who contribute their processing power to boinc projects, such as the Lattice boinc Project (http://boinc.umiacs.umd.edu). Our results, which demonstrate the advantages of relatively short workunits, should be of general interest to anyone who develops and deploys an application on the boinc platform.

Keywords

BOINC Volunteer computing Grid computing Scheduling Checkpointing GARLI Phylogenetics Maximum likelihood 

References

  1. 1.
    Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, GRID ’04, pp 4–10. USA, Washington, DC (2004)Google Scholar
  2. 2.
    Myers, D.S., Bazinet, A.L., Cummings, M.P.: Expanding the reach of Grid computing: combining Globus- and BOINC-based systems. In: Talbi, E.-G., Zomaya, A.Y. (eds.) Grids for Bioinformatics and Computational Biology, Wiley Book Series on Bioinformatics: Computational Techniques and Engineering, Chapter 4, pp 71–85. Wiley-Interscience, Hoboken (2008)Google Scholar
  3. 3.
    Bazinet, A.L., Cummings, M.P.: The Lattice Project: a Grid research and production environment combining multiple Grid computing models. In: Weber, M H W (ed.) Distributed & Grid Computing — Science Made Transparent for Everyone. Principles, Applications and Supporting Communities, Chapter 1, pp 2–13. Rechenkraft.net, Marburg (2008)Google Scholar
  4. 4.
    Foster, I., Kesselman, C.: Globus: a toolkit-based grid architecture. In: Foster, I., Kesselman, C. (eds.) The Grid: Blueprint for a New Computing Infrastructure, pp 259–278. Morgan-Kaufmann (1999)Google Scholar
  5. 5.
    Bazinet, A.L., Cummings, M.P.: Computing the tree of life: Leveraging the power of desktop and service grids, pp 1896–1902. IEEE International Symposium on Parallel and Distributed Processing Workshops and PhD Forum (2011)Google Scholar
  6. 6.
    Zwickl, D.J.: GARLI 2.0 https://www.nescent.org/wg_garli/main_page (2011)
  7. 7.
    Zwickl, D.J.: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD thesis. The University of Texas at Austin (2006)Google Scholar
  8. 8.
    Bazinet, A.L., Zwickl, D.J., Cummings, M.P.: A gateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0. Syst. Biol. 63(5), 812–8 (2014)CrossRefGoogle Scholar
  9. 9.
    Regier, J.C., Zwick, A., Cummings, M.P., Kawahara, A.Y., Cho, S., Weller, S., Roe, A., Baixeras, J., Brown, J.W., Parr, C., Davis, D.R., Epstein, M., Hallwachs, W., Hausmann, A., Janzen, D.H., Kitching, I.J., Solis, M.A., Yen, S.-H., Bazinet, A.L., Mitter, C.: Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. BMC Evol. Biol. 9, 280 (2009)CrossRefGoogle Scholar
  10. 10.
    Bazinet, A.L., Cummings, M.P., Mitter, K.T., Mitter, C.W.: Can RNA-Seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLoS ONE 8(12), e82615 (2013)CrossRefGoogle Scholar
  11. 11.
    Regier, J.C., Mitter, C., Zwick, A., Bazinet, A.L., Cummings, M.P., Kawahara, A.Y., Sohn, J.-C., Zwickl, D.J., Cho, S., Davis, D.R., Baixeras, J., Brown, J., Parr, C., Weller, S., Lees, D.C., Mitter, K.T.: A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS ONE 8(3), e58568 (2013)CrossRefGoogle Scholar
  12. 12.
    Cummings, M.P., JC Huskamp, J.C.: Grid computing. EDUCAUSE Review 40, 116–117 (2005)Google Scholar
  13. 13.
    Litzkow, M.J., Livny, M., Mutka, M.W.: Condor–a hunter of idle workstations. In: 8th International Conference on Distributed Computing Systems, pp 104– 111 (1988)Google Scholar
  14. 14.
    Bazinet, A.L.: The Lattice Project: A multi-model grid computing system. Master’s thesis. University of Maryland, College Park (2009)Google Scholar
  15. 15.
    Myers, D.S., Cummings, M.P.: Necessity is the mother of invention: a simple grid computing system using commodity tools. J. Parallel Distr. Com. 63(5), 578–589 (2003)CrossRefGoogle Scholar
  16. 16.
    Kawahara, A.Y., Ohshima, I., Kawakita, A., Regier, J.C., Mitter, C., Cummings, M.P., Davis, D.R., Wagner, D.L., De Prins, J., Lopez-Vaamonde, C.: Increased gene sampling provides stronger support for higher-level groups within moths, gracillariid leaf mining relatives (Lepidoptera, Gracillariidae). BMC Evol. Biol. 11, 182 (2011)CrossRefGoogle Scholar
  17. 17.
    Sohn, J.-C., Regier, J.C., Mitter, C., Davis, D., Landry, J.-F., Zwick, A., Cummings, M.P.: A molecular phylogeny for Yponomeutoidea (Insecta, Lepidoptera, Ditrysia) and its implications for classification, biogeography and the evolution of host plant use. PLoS ONE 8(1), e55066 (2013)CrossRefGoogle Scholar
  18. 18.
    Huang, S.W., Huang, T.-C., Lyu, S.-R., Shieh, C.-K., Chou, Y.-S.: Improving speculative execution performance with coworker for cloud computing. In: IEEE 17th International Conference Parallel and Distributed Systems (ICPADS), pp. 1004–1009 (2011)Google Scholar
  19. 19.
    Ananthanarayanan, G., Ghodsi, A., Shenker, S., Stoica, I.: Effective straggler mitigation: attack of the clones. In: USENIX Symposium on Networked Systems Design and Implementation, vol. 13, pp 185–198 (2013)Google Scholar
  20. 20.
    Anderson, D.P.: Emulating volunteer computing scheduling policies. In: IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), pp 1839–1846 (2011)Google Scholar
  21. 21.
    Kondo, D., Anderson, D.P., McLeod, J.: Performance evaluation of scheduling policies for volunteer computing. In: IEEE International Conference on e-Science and Grid Computing, pp 415–422 (2007)Google Scholar
  22. 22.
    Estrada, T., Flores, D.A., Taufer, M., Teller, P.J., Kerstens, A., Anderson, D.P.: The effectiveness of threshold-based scheduling policies in BOINC projects. In: Second IEEE International Conference on e-Science and Grid Computing, 2006. e-Science ’06, pp. 88–88 (2006)Google Scholar
  23. 23.
    Heien, E.M., Fujimoto, N., Hagihara, K.: Computing low latency batches with unreliable workers in volunteer computing environments. In: IEEE International Symposium on Parallel and Distributed Processing, 2008. IPDPS 2008, pp. 1–8 (2008)Google Scholar
  24. 24.
    Toth, D., Finkel, D.: Improving the productivity of volunteer computing by using the most effective task retrieval policies. J. Grid Comput. 7(4), 519–535 (2009)CrossRefGoogle Scholar
  25. 25.
    Rood, B., Lewis, M.J.: Grid resource availability prediction-based scheduling and task replication. J. Grid Comput. 7(4), 479–500 (2009)CrossRefGoogle Scholar
  26. 26.
    Estrada, T., Taufer, M., Anderson, D.P.: Performance prediction and analysis of BOINC projects: an empirical study with EmBOINC. J. Grid Comput 7(4), 537–554 (2009)CrossRefGoogle Scholar
  27. 27.
    Kovács, J., Marosi, A.-C., Visegrádi, A., Farkas, Z., Kacsuk, P., Lovas, R.: Boosting gLite with cloud augmented volunteer computing. Futur. Gener. Comput. Syst. 43–44, 12–23 (2015)CrossRefGoogle Scholar
  28. 28.
    Kondo, D., Chien, A.A., Casanova, H.: Scheduling task parallel applications for rapid turnaround on enterprise desktop grids. J. Grid Comput. 5(4), 379–405 (2007)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Biomolecular Sciences BuildingUniversity of MarylandCollege ParkUSA

Personalised recommendations