Advertisement

Journal of Grid Computing

, Volume 14, Issue 1, pp 91–108 | Cite as

Hybrid Approach for Energy Aware Management of Multi-cloud Architecture Integrating user Machines

  • D. BorgettoEmail author
  • R. Chakode
  • B. Depardon
  • C. Eichler
  • J. M. Garcia
  • H. Hbaieb
  • T. Monteil
  • E. Pelorce
  • A. Rachdi
  • A. Al Sheikh
  • P. Stolf
Article

Abstract

The arrival and development of remotely accessible services via the cloud has transfigured computer technology. However, its impact on personal computing remains limited to cloud-based applications. Meanwhile, acceptance and usage of telephony and smartphones have exploded. Their sparse administration needs and general user friendliness allows all people, regardless of technology literacy, to access, install and use a large variety of applications. We propose in this paper a model and a platform to offer personal computing a simple and transparent usage similar to modern telephony. In this model, user machines are integrated within the classical cloud model, consequently expanding available resources and management targets. In particular, we defined and implemented a modular architecture including resource managers at different levels that take into account energy and QoS concerns. We also propose simulation tools to design and size the underlying infrastructure to cope with the explosion of usage. Functionalities of the resulting platform are validated and demonstrated through various utilization scenarios. The internal scheduler managing resource usage is experimentally evaluated and compared with classical methodologies, showing a significant reduction of energy consumption with almost no QoS degradation.

Keywords

Hybrid cloud Sharing users resources Energy aware schedulers Autonomic computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bencivenni, M., Michelotto, D., Alfieri, R., Brunetti, R., Ceccanti, A., Cesini, D., Costantini, A., Fattibene, E., Gaido, L., Misurelli, G., Ronchieri, E., Salomoni, D., Veronesi, P., Venturi, V., Vistoli, M.C.: Accessing grid and cloud services through a scientific web portal. Journal of Grid Computing, Springer Netherlands 13(13), 159–175 (2015)Google Scholar
  2. 2.
    Vishnu Distributed Resource Management Middleware. http://sysfera.github.io/Vishnu.html
  3. 3.
    QoS Design Network Simulation Tool (NEST). http://www.qosdesign.com/index.php?menu=produits&langue=fr
  4. 4.
    Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: IaaS cloud architecture: from virtualized datacenters to federated cloud infrastructures. Computer 45(12), 65–72 (2012). IEEECrossRefGoogle Scholar
  5. 5.
    Hintjens, P.: ZeroMQ library: http://zeromq.org/ (2014)
  6. 6.
    Yoo, A., Jette, M., Grondona, M.: Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer Science, vol. 2862, pp 44–60. Springer (2003)Google Scholar
  7. 7.
  8. 8.
    Kvm live migration: http://www.linux-kvm.org/page/Migration (2014)
  9. 9.
    OpenNebula: Flexible enterprise cloud made simple. http://opennebula.org/ (2014)
  10. 10.
    OpenNebula: Match making scheduler. http://archives.opennebula.org/documentation:rel4.4:schg (2014)
  11. 11.
    Plogg smart plugs. http://www.plogginternational.com/ (2014)
  12. 12.
  13. 13.
    Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 (2012)CrossRefGoogle Scholar
  14. 14.
    Borgetto, D., Maurer, M., Da Costa, G., Brandic, I., Pierson, J.-M.: Energy-efficient and SLA-Aware Management of IaaS Clouds. In: ACM/IEEE International Conference on Energy-Efficient Computing and Networking (e-Energy). ACM DL (2012)Google Scholar
  15. 15.
    Caballer, M., Blanquer, I., Molto, G., de Alfonso, C.: Dynamic management of virtual infrastructures. Journal of Grid Computing, Springer Netherlands 13(1), 53–70 (2015)CrossRefGoogle Scholar
  16. 16.
    Ghribi, C., Hadji, M., Zeghlache, D.: Energy efficient vm scheduling for cloud data centers: exact allocation and migration algorithms. In: 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp 671–678 (2013)Google Scholar
  17. 17.
    Ben Alaya, M., Monteil, T.: FRAMESELF: an ontology-based framework for the self-management of M2M systems Concurrency and Computation: Practice and Experience. Wiley (2013)Google Scholar
  18. 18.
    Lefèvre, L., Orgerie, A.-C.: Designing and evaluating an energy efficient cloud. J. Supercomput. 51(3), 352–373 (2010)CrossRefGoogle Scholar
  19. 19.
    Leinberger, W., Karypis, G., Kumar, V.: Multi-capacity bin packing algorithms with applications to job scheduling under multiple constraints. In: International Conference on Parallel Processing, pp 404–412 (1999)Google Scholar
  20. 20.
    Takahashi, S., Takefusa, A., Shigeno, M., Nakada, H., Kudoh, T., Yoshise, A.: Virtual machine packing algorithms for lower power consumption. In: IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom), pp 161–168 (2012)Google Scholar
  21. 21.
    Bacso, G., Visegradi, A., Kertesz, A., Nemeth, Z.: On Efficiency of multi-job grid allocation based on statistical trace data. Journal of Grid Computing, Springer Netherlands 12(1), 169–186 (2014)CrossRefGoogle Scholar
  22. 22.
    IBM: An Architectural Blueprint for Autonomic Computing. IBM White Paper 4th ed. (2006)Google Scholar
  23. 23.
    Xiao, Z., Song, W., Chen, Q.: Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans. Parallel Distrib. Syst. 24(6), 1107–1117 (2013)CrossRefGoogle Scholar
  24. 24.
    Yang, J.-S., Liu, P., Wu, J.-J.: Workload characteristics-aware virtual machine consolidation algorithms. In: IEEE 4th International Conference on Cloud Computing Technology and Science (CloudCom), pp 42–49 (2012)Google Scholar
  25. 25.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  26. 26.
    Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems. In: 5th International Joint Conference INC, IMS and IDC (NCM’09), pp 44–51 (2009)Google Scholar
  27. 27.
    Mell, P., Grance, T.: The NIST definition of cloud computing (draft), NIST special publication 2011, vol. 800(145) (2011)Google Scholar
  28. 28.
    Vijayaraghavan, S., Kinshuk, G.: Challenges in building scalable virtualized datacenter management. SIGOPS Oper. Syst. Rev. 44(4), 95–102 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • D. Borgetto
    • 2
    • 3
    Email author
  • R. Chakode
    • 7
  • B. Depardon
    • 7
  • C. Eichler
    • 5
    • 6
  • J. M. Garcia
    • 5
    • 6
  • H. Hbaieb
    • 1
  • T. Monteil
    • 5
    • 6
  • E. Pelorce
    • 1
  • A. Rachdi
    • 4
  • A. Al Sheikh
    • 4
  • P. Stolf
    • 2
    • 3
  1. 1.DegetelBoulogne-BillancourtFrance
  2. 2.IRITToulouseFrance
  3. 3.University de ToulouseToulouseFrance
  4. 4.ToulouseFrance
  5. 5.CNRS, LAASToulouseFrance
  6. 6.University de Toulouse, INSA 31400ToulouseFrance
  7. 7.VilleurbanneFrance

Personalised recommendations