Journal of Grid Computing

, Volume 10, Issue 2, pp 325–346 | Cite as

Multiple Workflow Scheduling Strategies with User Run Time Estimates on a Grid

  • Adán Hirales-Carbajal
  • Andrei Tchernykh
  • Ramin Yahyapour
  • José Luis González-García
  • Thomas Röblitz
  • Juan Manuel Ramírez-Alcaraz


In this paper, we present an experimental study of deterministic non-preemptive multiple workflow scheduling strategies on a Grid. We distinguish twenty five strategies depending on the type and amount of information they require. We analyze scheduling strategies that consist of two and four stages: labeling, adaptive allocation, prioritization, and parallel machine scheduling. We apply these strategies in the context of executing the Cybershake, Epigenomics, Genome, Inspiral, LIGO, Montage, and SIPHT workflows applications. In order to provide performance comparison, we performed a joint analysis considering three metrics. A case study is given and corresponding results indicate that well known DAG scheduling algorithms designed for single DAG and single machine settings are not well suited for Grid scheduling scenarios, where user run time estimates are available. We show that the proposed new strategies outperform other strategies in terms of approximation factor, mean critical path waiting time, and critical path slowdown. The robustness of these strategies is also discussed.


Grid computing Workflow scheduling Resource management User run time estimate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 3rd edn. Springer (2008)Google Scholar
  2. 2.
    Mccreary, C., Khan, A.A., Thompson, J.J., Mcardle, M.E.: A comparison of heuristics for scheduling dags on multiprocessors. In: International Parallel and Distributed Processing Symposium (IPPS94), pp. 446–451. Cancun, México (1994)Google Scholar
  3. 3.
    Kwong, K.Y., Ahmad, I.: Dynamic critical-path scheduling: an effective technique for allocating task graphs to multiprocessors. IEEE Trans. Parallel Distrib. Syst. 7, 506–521 (1996)CrossRefGoogle Scholar
  4. 4.
    Kwok, Y.-K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput. Surv. 31(4), 406–471 (1999)CrossRefGoogle Scholar
  5. 5.
    Leung, J., Kelly, L., Anderson, J.H.: Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press, Inc., Boca Raton (2004)zbMATHGoogle Scholar
  6. 6.
    Rajakumar, S., Arunachalam, V.P., Selladurai, V.: Workflow balancing strategies in parallel machine scheduling. Int. J. Adv. Manuf. Technol. 23, 366–374 (2004)CrossRefGoogle Scholar
  7. 7.
    Wieczorek, M., Prodan, R., Fahringer, T.: Scheduling of scientific workflows in the askalon grid environment. SIGMOD Record 34(3), 56–62 (2005)CrossRefGoogle Scholar
  8. 8.
    Bittencourt, L.F., Madeira, E.R.M.: A dynamic approach for scheduling dependent tasks on the xavantes grid middleware. In: MCG’06: Proceedings of the 4th International Workshop on Middleware for Grid Computing. MCG’06, pp. 10–16. ACM, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Jia, Y., Rajkumar, B.: Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms. Sci. Program. 14(3), 217–230 (2006)Google Scholar
  10. 10.
    Ramakrishnan, A., Singh, G., Zhao, H., Deelman, E., Sakellariou, R., Vahi, K., Blackburn, K., Meyers, D., Samidi, M.: Scheduling data-intensive workflows onto storage-constrained distributed resources. In: CCGRID’07: Proceedings of the 7th IEEE Symposium on Cluster Computing and the Grid. CCGRID’07, pp. 14–17 (2007)Google Scholar
  11. 11.
    Szepieniec, T., Bubak, M.: Investigation of the dag eligible jobs maximization algorithm in a grid. In: Proceedings of the 2008 9th IEEE/ACM International Conference on Grid Computing, GRID’08, pp. 340–345. IEEE Computer Society, Washington (2008)CrossRefGoogle Scholar
  12. 12.
    Singh, G., Su, M.-H., Vahi, K., Deelman, E., Berriman, B., Good, J., Katz, D.S., Mehta, G.: Workflow task clustering for best effort systems with Pegasus. In: MG’08: Proceedings of the 15th ACM Mardi Gras Conference, pp. 1–8. ACM, New York (2008)Google Scholar
  13. 13.
    Masko, L., Dutot, P.F., Mounie, G., Trystram, D., Tudruj, M.: Scheduling moldable tasks for dynamic SMP clusters in soc technology. In: Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science, vol. 3911, pp. 879–887. Springer (2005)Google Scholar
  14. 14.
    Masko, L., Mounie, G., Trystram, D., Tudruj, M.: Program graph structuring for execution in dynamic SMP clusters using moldable tasks. In: International Symposium on Parallel Computing in Electrical Engineering, PAR ELEC 2006, pp. 95–100 (2006)Google Scholar
  15. 15.
    Singh, G., Kesselman, C., Deelman, E.: Optimizing grid-based workflow execution. J. Grid Computing 3, 201–219 (2005)CrossRefGoogle Scholar
  16. 16.
    Bittencourt, L.F., Madeira, E.R.M.: Towards the scheduling of multiple workflows on computational grids. J. Grid Computing 8, 419–441 (2010)CrossRefGoogle Scholar
  17. 17.
    Zhao, H., Sakellariou, R.: Scheduling multiple dags onto heterogeneous systems. In: Parallel and Distributed Processing Symposium, 20th International, IPDPS’06, p. 14. IEEE Computer Society, Washington (2006)Google Scholar
  18. 18.
    Topcuouglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)CrossRefGoogle Scholar
  19. 19.
    Sakellariou, R., Zhao, H.: A hybrid heuristic for dag scheduling on heterogeneous systems. In: 13th IEEE Heterogeneous Computing Workshop (HCW’04). IPDPS’04, pp. 111–123. IEEE Computer Society, Santa Fe (2004)Google Scholar
  20. 20.
    Zhu, L., Sun, Z., Guo, W., Jin, Y., Sun, W., Hu, W.: Dynamic multi dag scheduling algorithm for optical grid environment. Netw. Architect. Manag. Appl. V 6784(1), 1122 (2007)Google Scholar
  21. 21.
    N’takpé, T., Suter, F.: Concurrent scheduling of parallel task graphs on multi-clusters using constrained resource allocations. In: International Parallel and Distributed Processing Symposium/International Parallel Processing Symposium, pp. 1–8 (2009)Google Scholar
  22. 22.
    Hsu, C.-C., Huang, K.-C., Wang, F.-J.: Online scheduling of workflow applications. In Grid environments. Future Gen. Comput. Syst. 27, 860–870 (2011)CrossRefGoogle Scholar
  23. 23.
    Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel Distrib. Syst. 12, 529–543 (2001)CrossRefGoogle Scholar
  24. 24.
    Ramirez-Alcaraz, J.M., Tchernykh, A., Yahyapour, R., Schwiegelshohn, U., Quezada-Pina, A., Gonzalez-García, J.L., Hirales-Carbajal, A.: Job allocation strategies with user run time estimates for online scheduling in hierarchical Grids. J. Grid Computing 9, 95–116 (2011)CrossRefGoogle Scholar
  25. 25.
    Shmoys, D.B., Wein, J., Williamson, D.P.: Scheduling parallel machines on-line. SIAM J. Comput. 24, 1313–1331 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Condor high throughput computing. Available in: Cited August 2011
  27. 27.
    Openpbs. Available in: Cited August 2011
  28. 28.
    Globus. Available in Cited August 2011
  29. 29.
    Tchernykh, A., Schwiegelshohn, U., Yahyapour, R., Kuzjurin, N.: On-line hierarchical job scheduling on Grids with admissible allocation. J. Scheduling 13, 545–552 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Workflow generator. Available in Cited August 2010
  31. 31.
    Garey, M.R., Graham, R.L.: Bounds for multiprocessor scheduling with resource constraints. SIAM J. Comput. 4, 187–200 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Hirales-Carbajal, A., Tchernykh, A., Roblitz, T., Yahyapour, R.: A grid simulation framework to study advance scheduling strategies for complex workflow applications. In: IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–8 (2010)Google Scholar
  33. 33.
    Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.-H., Vahi, K.: Characterization of scientific workflows. In: Third Workshop on Workflows in Support of Large-Scale Science, WORKS08, pp. 1–10 (2008)Google Scholar
  34. 34.
    Lee, C.B., Schwartzman, Y., Hardy, J., Snavely, A.: Are user runtime estimates inherently inaccurate? In: Job Scheduling Strategies for Parallel Processing, pp. 253–263 (2004)Google Scholar
  35. 35.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Dolan, E.D., Moré, J.J., Munson, T.S.: Optimality measures for performance profiles. Siam. J. Optim. 16, 891–909 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Dongarra, J.J., Jeannot, E., Saule, E., Shi, Z.: Bi-objective scheduling algorithms for optimizing makespan and reliability on heterogeneous systems. In: Proceedings of the Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA’07, pp. 280–288. ACM, New York (2007)CrossRefGoogle Scholar
  38. 38.
    Saule, E., Trystram, D.: Analyzing scheduling with transient failures. Inform. Process. Lett. 109(11), 539–542 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Canon, L.-C., Jeannot, E., Sakellariou, R., Zheng, W.: Comparative evaluation of the robustness of dag scheduling heuristics. In: Gorlatch, S., Fragopoulou, P., Priol, T. (eds.) Journal of Grid Computing, pp. 73–84. Springer, New York (2008)CrossRefGoogle Scholar
  40. 40.
    Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for scheduling parameter sweep applications in grid environments. In: Heterogeneous Computing Workshop, pp. 349–363 (2000)Google Scholar
  41. 41.
    Buyya, R., Murshed, M.: GridSim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. J. Concurr. Comput. Pract. Exp. 14, 1175–1220 (2002)zbMATHCrossRefGoogle Scholar
  42. 42.
    Casanova, H.: SimGrid: a toolkit for the simulation of application scheduling. In: Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 430–437 (2001)Google Scholar
  43. 43.
    Sulistio, A., Yeo, C.S., Buyya, R.A.: A taxonomy of computer-based simulations and its mapping to parallel and distributed systems simulation tools. Software: Practice and Experience (SPE) 34(7), 653–673 (2004). ISSN: 0038-0644CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Adán Hirales-Carbajal
    • 1
  • Andrei Tchernykh
    • 1
  • Ramin Yahyapour
    • 2
  • José Luis González-García
    • 2
  • Thomas Röblitz
    • 2
  • Juan Manuel Ramírez-Alcaraz
    • 3
  1. 1.Computer Science DepartmentCICESE Research CenterEnsenadaMéxico
  2. 2.GWDG – University of GöttingenGöttingenGermany
  3. 3.Colima UniversityColimaMéxico

Personalised recommendations