Skip to main content

COMPCHEM: Progress Towards GEMS a Grid Empowered Molecular Simulator and Beyond

Abstract

Foundations and structure of the building blocks of GEMS, the ab initio molecular simulator designed for implementation on the EGEE computing Grid, are analyzed. The impact of the computational characteristics of the codes composing its blocks (the calculation of the ab initio potential energy values, the integration of the dynamics equations of the nuclear motion, and the statistical averaging of microscopic information to evaluate the relevant observable properties) on their Grid implementation when using rigorous ab initio quantum methods are discussed. The requests prompted by this approach for new computational developments are also examined by considering the present implementation of the simulator that is specialized in atom diatom reactive exchange processes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Laganà, A. (ed.): Supercomputer Algorithms for Reactivity, Dynamics and Kinetics of Small Molecules. Kluwer, Dordrecht. (1989). ISBN 0-7923-0226-5

    Google Scholar 

  2. 2.

    Hirst, D.M.: A Computational Approach to Chemistry. Blackwell Scientific Publications, Oxford (1990). ISBN 0-632-02431-3

    Google Scholar 

  3. 3.

    Schatz, G.C., Ratner, M.A.: Quantum Mechanics in Chemistry. Prentice Hall, Englewood Cliffs (1993). ISBN 0-13-075011-5

    Google Scholar 

  4. 4.

    Laganà, A., Riganelli, A. (eds.): Lecture Notes in Chemistry. Springer, Berlin (2000). ISBN 3-540-41202-6

    Google Scholar 

  5. 5.

    Laganà, A., Lendvay, G. (eds.): Theory of Chemical Reaction Dynamics. Kluwer, Dordrecht (2004). ISBN 1-4020-2165-6

    Google Scholar 

  6. 6.

    Laganà, A., Riganelli, A.: Computational Reaction and Molecular Dynamics: From Simple Systems and Rigorous Methods to Complex Systems and Approximate Methods. Lecture Notes in Chemistry, vol. 75, 1–10 (2000)

  7. 7.

    Gervasi, O., Crocchianti, S., Pacifici, L., Skouteris, D., Laganà, A.: Towards the Grid design of the dynamics engine of a molecular simulator. In: Lecture Series in Computer and Computational Science, vol. 7, pp. 1425–1428 (2006)

  8. 8.

    Gervasi, O., Manuali, C., Laganà, A., Costantini, A.: On the structuring of a molecular simulator as a Grid service. In: Chemistry and Material Science Applications on Grid Infrastructures. ICTP Lecture Notes, vol. 24, pp. 63–82 (2009). ISBN 92-95003-42-X

  9. 9.

    Laganà, A., Riganelli, A., Gervasi, O.: On the structuring of the computational chemistry virtual organization COMPCHEM. Lect. Notes Comput. Sci. 3980, 665–674 (2006). http://compchem.unipg.it

    Article  Google Scholar 

  10. 10.

    EGEE (Enabling Grids for E-Science in Europe): http://public.eu-egee.org

  11. 11.

    Gervasi, O., Laganà, A.: SIMBEX: a portal for the a priori simulation of crossed beam experiments. Future Gener. Comput. Syst. 20(5), 703–716 (2004)

    Article  Google Scholar 

  12. 12.

    Newhouse, S.: http://web.eu-egi.eu/documents/other/egi-blueprint/

  13. 13.

    Costantini, A.: Computational chemistry—requirements and experiences with use of MPI. In: EGEE, EGEE’09, Barcelona, September 09. http://indico.cern.ch/contributionDisplay.py?contribId=208&sessionId=19&confId=55893

  14. 14.

    Costantini, A., Laganà, A., Gervasi, O.: Multiscale Study of O3 Tropospheric in Middle Italy. http://indico.cern.ch/contributionDisplay.py?contribId=82&sessionId=137&confId=55893

  15. 15.

    Chapman, S., Gelb, A., Bunker, D.L.: A + BC: A General Triatomic Classical Trajectory Program. Quantum Chemistry Program Exchange, QCPE 273, Indiana University (1975)

  16. 16.

    Polanyi, J.C., Schreiber, J.L.: The dynamics of bimolcular reactions in physical chemistry. An advanced treatise. In: Eyring, H., Jost, W., Henderson, D. (eds.) Kinetics of Gas Reactions, vol. VI, p. 383. Academic, New York (1974)

    Google Scholar 

  17. 17.

    Storchi, L., Tarantelli, F., Laganà, A.: Computing molecular energy surfaces on a Grid. Lect. Notes Comput. Sci. 3980, 675–683 (2006)

    Article  Google Scholar 

  18. 18.

    Verdicchio, M.: Thesis of the Euromaster in Theoretical Chemistry and Computational Modelling, Perugia (2009)

  19. 19.

    Gordon, M.S., Schmidt, M.W.: Advances in electronic structure theory: GAMESS a decade later. In: Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E. (eds.) Theory and Applications of Computational Chemistry: The First Forty Years, pp. 1167–1189. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  20. 20.

    DALTON: A Molecular Electronic Structure Program, Release 2.0 (2005). See http://daltonprogram.org

  21. 21.

    Werner, H.J., Knowles, P.J.: MOLPRO: A Package of Ab Initio Programs, Version 2002.6. http://www.molpro.net/

  22. 22.

    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C. Iyengar, S.S. Tomasi, J. Cossi, M. Rega, Millam, N.J., Klene, M. Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R.E., Stratmann, O., Yazyev, A.J., Austin, R., Cammi, C., Pomelli, J.W., Ochterski, R., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian, Wallingford (2009)

    Google Scholar 

  23. 23.

    Arteconi, L., Laganà, A., Pacifici, L.: A web based application to fit potential energy functionals to ab initio values. Lect. Notes Comput. Sci. 3980, 694–700 (2006)

    Article  Google Scholar 

  24. 24.

    Angeli, C., Bendazzoli, G.L., Borini, S., Cimiraglia, R., Emeerson, A., Evangelisti, S., Maynau, D., Monari, A., Rossi, E., Sanchez-Marin, J., Szalay, P.G., Tajti, A.: The problem of interoperability: a common data format for quantum chemistry codes. Int. J. Quant. Chem. 107, 2082–2091 (2007)

    Article  Google Scholar 

  25. 25.

    Schatz, G.C.: Potential energy surfaces. Lect. Notes Chem. 75, 15–32 (2000)

    Google Scholar 

  26. 26.

    Murrell, J.N., Carter, S., Farantos, S.C., Huxley, P., Varandas, A.J.C.: Molecular Potential Energy Functions. Wiley, London (1984)

    Google Scholar 

  27. 27.

    Garcia, E., Laganà, A.: Diatomic potential functions for triatomic scattering. Mol. Phys. 56, 621–627 (1985)

    Article  Google Scholar 

  28. 28.

    Garcia, E., Laganà, A.: A new bond order functional form for triatomic molecules: a fit of the BeFH potential energy. Mol. Phys. 56, 629–639 (1985)

    Article  Google Scholar 

  29. 29.

    Aguado, A., Tablero, C., Paniagua, M.: Global fit of ab initio potential energy surfaces I: triatomic systems. Comput. Phys. Commun. 108, 259–266 (1998)

    MATH  Article  Google Scholar 

  30. 30.

    Laganà, A.: A rotating bond order formulation of the atom diatom potential energy surface. J. Chem. Phys. 95, 2216–2217 (1991)

    Article  Google Scholar 

  31. 31.

    Laganà, A., Ochoa de Aspuru, G., Garcia, E.: The largest angle generalization of the rotating bond order potential: three different atom reactions. J. Chem. Phys. 108, 3886–3896 (1998)

    Article  Google Scholar 

  32. 32.

    Rodriguez, A., Garcia, E., Hernandez, M.L., Laganà, A.: A LAGROBO strategy to fit potential energy surfaces: the OH + HCl reaction. Chem. Phys. Lett. 360, 304–312 (2002)

    Article  Google Scholar 

  33. 33.

    Skouteris, D., Pacifici, L., Laganà, A.: Time dependent wavepacket calculations for the N(4S) + N2(\(^1\Sigma^+_g\)) system on a LEPS surface: inelastic and reactive probabilities. Mol. Phys. 102(21–22), 2237–2248 (2004)

    Article  Google Scholar 

  34. 34.

    Pack, R.T.: Space-fixed vs body-fixed axes in atom-diatomic molecule scattering. Sudden approximations. J. Chem. Phys. 60, 633–700 (1974)

    Article  Google Scholar 

  35. 35.

    McGuire, P.M., Kouri, D.: Quantum mechanical close coupling approach to molecular collisions: jz-conserving coupled states approximation. J. Chem. Phys. 60 2488–2503 (1974)

    Article  Google Scholar 

  36. 36.

    Balint-Kurti, G.G.: Time dependent quantum approaches to chemical reactivity. Lect. Notes Chem. 75, 74–87 (2000)

    Google Scholar 

  37. 37.

    Garcia, E., Saracibar, A., Laganà, A., Balucani, N.: On the anomaly of the quasiclassical product distributions of the OH + CO → H + CO2 reaction. Theor. Chem. Acc. (in press)

  38. 38.

    Tsai, Y.R., Cheng, L.T., Osher, S., Zhao, H.K.: Fast sweeping algorithms for a cLass of Hamilton–Jacobi equations. SIAM J. Numer. Anal. 41, 673–694 (2003)

    MATH  Article  MathSciNet  Google Scholar 

  39. 39.

    Skouteris, D., Castillo, J.F., Manolopulos, D.E.: ABC: a quantum reactive scatering program. Comput. Phys. Commun. 133, 128–135 (2000)

    MATH  Article  Google Scholar 

  40. 40.

    Schatz, G.C.: Quantum reactive scattering using hyperspherical coordinates: results for H + H2 and Cl + HCl. Chem. Phys. Lett. 150, 92–98 (1998)

    Article  Google Scholar 

  41. 41.

    Casavecchia, P., Balucani, N., Volpi, G.G.: The chemical dynamics and kinetics of small radicals. In: Lin, K., Wagner, A.F. (eds.) Adv. Ser. Phys. Chem., vol. 6, chapter 9. World Scientific, Singapore (1995)

    Google Scholar 

  42. 42.

    Lee, Y.T.: In: Scoles, G. (ed.) Atomic and Molecular Beam Method. Oxford University Press, New York (1987)

    Google Scholar 

  43. 43.

    Siska, P.E.: Iterative unfolding of intensity data, with application to molecular beam scattering. J. Chem. Phys. 59, 6052 (1973)

    Article  Google Scholar 

  44. 44.

    Skouteris, D., De Fazio, D., Cavalli, S., Aquilanti, V.: Quantum stereodynamics for the two product channels of the F + HD reaction from the complete scattering matrix in the stereodirected representation. J. Phys. Chem. A 113, 14807–14812 (2009)

    Article  Google Scholar 

  45. 45.

    Saracibar, A., Sanchez, C., Garcia, E., Laganà, A., Skouteris, D.: Grid computing in time dependent quantum reactive dynamics. Lect. Notes Comput. Sci. 5072, 1065–1080 (2008)

    Article  Google Scholar 

  46. 46.

    Bellucci, D., Tasso, S., Laganà, A.: Parallel model for a discrete variable wavepacket propagation. Lect. Notes Comput. Sci. 2658, 341–349 (2003)

    Article  Google Scholar 

  47. 47.

    Gregori, S., Tasso, S., Laganà, A.: Fine grain parallelization of a discrete variable wavepacket calculation using ASSIST-CL. Lect. Notes Comput. Sci. 3044, 437–444 (2004)

    Article  Google Scholar 

  48. 48.

    Kacsuk, P., Sipos, G.: Multi-Grid, Multi-user workflows in the P-GRADE portal. Journal of Grid Computing 3(3–4), 221–238 (2005)

    Article  Google Scholar 

  49. 49.

    Kacsuk, P., Dózsa, G., Kovács, J., Lovas, R., Podhorszki, N.Z., Balaton Gombás, G.: P-GRADE: a Grid programming environment. Journal of Grid Computing 1. 171–197 (2003)

    Article  Google Scholar 

  50. 50.

    Kacsuk, P., Farkas, Z., Herman, G.: Workflow-level parameter study support for production Grids. Lect. Notes in Comput. Sci. 4707, 872–885 (2007)

    Article  Google Scholar 

  51. 51.

    Skouteris, D., Costantini, A., Laganà, A., Sipos, G., Balaski, A., Kacsuk, P.: Implementation of the ABC quantum mechanical reactive scattering program on the EGEE Grid platform. Lect. Notes Comput. Sci. 5072, 1108–1120 (2008)

    Article  Google Scholar 

  52. 52.

    Multi-Grid installation of P-GRADE portal: http://portal.p-grade.hu/multi-Grid

  53. 53.

    Kacsuk, P., Sipos, G.: Multi-Grid, Multi-user workflows in the P-GRADE Grid portal. Journal of Grid Computing 3, 221–238 (2006)

    Article  Google Scholar 

  54. 54.

    Rampino, S., Skouteris, D., Laganà, A., Garcia, E.: A comparison of the isotope effect for the N + N2reaction calculated on two potential energy surfaces. Lect. Notes Comput. Sci. 5072, 1081–1093 (2008)

    Article  Google Scholar 

  55. 55.

    Rampino, S., Skouteris, D., Laganà, A.: The O + O2 reaction: quantum detailed probabilities and thermal rate coefficients. Theor. Chem. Acc. 123, 249–256 (2009)

    Article  Google Scholar 

  56. 56.

    Manolopulos, D.E.: An improved log derivative method for inelastic scattering. J. Chem. Phys. 85, 6425–6429 (1986)

    Article  Google Scholar 

  57. 57.

    Pack, R.T., Parker, G.A.: Quantum scattering in the three dimentions using hyperspherical (APH) coordinates. Theory. J. Chem. Phys. 87, 3888–3921 (1987)

    Google Scholar 

  58. 58.

    Manuali, C., Laganà, A., Rampino, S.: GRIF: a Grid Framework for a web service approach to reactive scattering. Comp. Phys. Commun. 181, 1179–1185 (2010)

    Article  Google Scholar 

  59. 59.

    www.cineca.it

  60. 60.

    www.cnaf.infn.it

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Laganà.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Laganà, A., Costantini, A., Gervasi, O. et al. COMPCHEM: Progress Towards GEMS a Grid Empowered Molecular Simulator and Beyond. J Grid Computing 8, 571–586 (2010). https://doi.org/10.1007/s10723-010-9164-x

Download citation

Keywords

  • Grid
  • EGEE
  • Molecular dynamics