Skip to main content

Minimizing the Average Completion Time for Concurrent Grid Applications


When multiple grid applications are executed on a common grid computing infrastructure, the policy of resource allocation impacts the time to complete these applications. In this paper, we formulate an analytical model that permits us to compare different allocation policies. We show that a uniform allocation policy penalizes large jobs (i.e., the work required for an application), whereas a linear allocation of resources penalizes small jobs. In particular, we study an allocation policy that aims at minimizing the average job completion time. We show that such policy can reduce the average completion time by as much as 50% of the completion time required for uniform or linear allocation policies. Using such policy is also fair to applications because it does not penalize small jobs or large jobs as other policies (such as uniform or linear) do.

This is a preview of subscription content, access via your institution.


  1. Adler, M., Gong, Y., Rosenberg A.L.: Optimal sharing of bags of tasks in heterogeneous clusters. In: Proc. of SPAA2003 (2003)

  2. Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: Proc. of IEEE/ACM International Workshop on Grid Computing, Pittsburgh (2004)

  3. Aron, M., Druschel, P., Zwaenepoel, W.: Cluster reserves: a mechanism for resource management in cluster-based network servers, pp. 90–101. In: Proceedings of the 2000 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, Santa Clara (2000)

  4. Baccelli, F., Massey, W., Towsley, D.: Acyclic fork-join queueing networks. J. ACM 36(3), 615–642 (1989)

    MATH  Article  MathSciNet  Google Scholar 

  5. Broberg, J., Venugopal, S., Buyya, R.: Market-oriented grids and utility computing: the state-of-the-art and future directions. J. Grid Comput. 6, 255–276 (2008)

    Article  Google Scholar 

  6. Buyya, R., Murshed, M.: Gridsim: a toolkit for the modeling and simulation of distributed resource management and scheduling for grid computing. J. Concurr. Comput.: Pract. Exp. 14, 1175–1212 (2002)

    MATH  Article  Google Scholar 

  7. Cheung, S.Y., Ahamad, M., Ammar, M.H.: The grid protocol: a high performance scheme for maintaining replicated data. IEEE Trans. Knowl. Data Eng. 4(6), 582–592 (1992)

    Article  Google Scholar 

  8. Cirne, W., Brasileiro, F., Andrade, N., Costa, L.B., Andrade, A., Novaes, R., Mowbray, M.: Labs of the world, unite! J. Grid Comput. 4(3), 225–246 (2006)

    MATH  Article  Google Scholar 

  9. Cohen, E., Shenker, S.: Replication strategies in unstructured peer-to-peer networks. In: Proc. of SIGCOMM 2002, Pittsburgh (2002)

  10. Eager, D., Zahorjan, J., DLawoska, E.: Speedup versus efficiency in parallel systems. IEEE Trans. Comput. 38(3), 408–423 (1989)

    Article  Google Scholar 

  11. Figueira, S.: Optimal partitioning of nodes to space-sharing parallel tasks. Parallel Comput. J. 32(4), 313–324 (2006)

    Article  MathSciNet  Google Scholar 

  12. Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: Evaluation of job-scheduling strategies for grid computing. In: Proc. of 1st IEEE/ACM International Workshop on Grid Computing. Lecture Notes in Computer Science (LNCS), pp. 191–202. Springer, Berlin (2000)

    Google Scholar 

  13. Harchol-Balter, M., Crovella, M., Murta, C.: On choosing a task assignment policy for a distributed server system. IEEE J. Parallel Distrib. Comput. 59(2), 204–228 (1999)

    Article  Google Scholar 

  14. Johnson, T.: Approximate analysis of reader and writer access to a shared resource. In: Proc. of Sigmetrics 1990, pp. 106–14. Boulder (1990)

  15. Krishnan, R.: Grid economics: a selective discussion of two research problems. J. Grid Comput. 6, 219–224 (2008)

    Article  Google Scholar 

  16. Mills, K., Dabrowski, C.: Can economics-based resource allocation prove effective in a computation marketplace. J. Grid Comput. 6, 291–311 (2008)

    Article  Google Scholar 

  17. Nelson, R., Tantawi, A.: Approximate analysis of fork/join synchronization in parallel queues. IEEE Trans. Comput. 37(6), 739–743 (1988)

    Article  Google Scholar 

  18. Nelson, R., Towsley, D., Tantawi, A.: Performance analysis of parallel processing systems. IEEE Trans. Softw. Eng. 14, 532–540 (1988)

    Article  Google Scholar 

  19. Neumann, D., Stober, J., Weinhardt, C., Nimis, J.: A framework for commercial grids—economic and technical challenges. J. Grid Comput. 6, 325–347 (2008)

    Article  Google Scholar 

  20. Penmatsa, S., Chronopoulos, A.T.: Job allocation schemes in computational grids based on cost optimization. In: Proc. of 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05), Denver (2005)

  21. Reiman, M., Wright, P.: Performance analysis of concurrent-read exclusive-write, pp. 168–177. In: Proc. of Sigmetrics 1991, San Diego (1991)

  22. Snow, C.D., Ngyen, H., Pande, V.S., Gruebele, M.: Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420:102–106 (2002)

    Article  Google Scholar 

  23. SPEC.: Cpu2000 results. (2000)

  24. Urgaonkar, B., Shenoy, P.: Sharc: managing cpu and network bandwidth in shared clusters. IEEE Trans. Parallel Distrib. Syst. 15(1), 2–17 (2004)

    Article  Google Scholar 

  25. Varki, E., Dowdy, L.W.: Analysis of balanced fork-join systems. In: Proc. of Sigmetrics 1996, pp. 232–241. Philadelphia (1996)

  26. Zhao, X., Wang, B., Du, N., Zhao, C., Xu, L.: Qos-based algorithm for job allocation and scheduling in data grid, pp. 20–26. In: Proc. of Fifth International Conference on Grid and Cooperative Computing Workshops (2006)

  27. Zheng, Q.: Dynamic load balancing and pricing in grid computing with communication delay. J. Grid Comput. 6, 239–253 (2008)

    Article  Google Scholar 

  28. Zhu, H., Smith, B., Yang, T.: Scheduling optmization for resource-intensive web requests on server clusters. In: Proceedings of the eleventh annual ACM symposium on Parallel algorithms and architectures, pp. 13–22. Saint-Malo (1999)

  29. Zikos, S., Karatza, H.D.: Resource allocation strategies in a 2-level hierarchical grid system. In: Proc. of 41st Annual Simulation Symposium, pp. 157–164. (2008)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daniel Villela.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Villela, D. Minimizing the Average Completion Time for Concurrent Grid Applications. J Grid Computing 8, 47–59 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Grid allocation
  • Grid computing models
  • Fairness
  • Resource management
  • Volunteer computing