Skip to main content
Log in

The nuclear DNA content, ploidy, and chromosome numbers in some species of Nitraria and associations with pollen characteristics

  • Research article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

For the first time, nuclear genome size and ploidy of five Nitraria species from 49 populations were examined by flow cytometry. All populations were also analyzed for the chromosome number. We identified significant differences in the 2C nuclear DNA content among the analyzed species, and this parameter correlated with their ploidy. Diploid (2n = 2x = 24) species N. sibirica and N. tangutorum were found to have smaller genome size (1.24–1.34 and 1.57–1.65 pg) as compared to tetraploid (2n = 4x = 48) species N. komarovii (2.23–2.32 pg), N. pamirica (3.10–3.30 pg), and N. schoberi (2.93–3.39 pg). Intra-population genome size variation was found in examined species, varying from 1.01 to 1.08-fold. Nitraria sibirica has lower inter-population variation of the 2C (1.08-fold) as compared to N. schoberi (1.16-fold). All the Nitraria species are mixoploids. It turned out that an increase in the equatorial axis of Nitraria pollen is associated with an increase in 2C and 1Cx. An exception is N. komarovii, with its intermediate 2C DNA content and the smallest pollen grains. In general, our data confirm Bobrov's previous views on the system of the genus Nitraria, which distinguished ser. Sibiricae and ser. Schoberianae in sect. Nitraria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albach DC, Greilhuber JG (2004) Genome size variation and evolution in veronica. Ann Bot 94:897–911. https://doi.org/10.1093/aob/mch219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amer WM, Amany SA (2014) Infra-specific pollen diversity of Atriplex halimus L. in Egyptian flora. IJRSB 2:36–48

    Google Scholar 

  • Banaev EV, Tomoshevich MA, Voronkova MS (2018) Flow cytometry analysis of the relative content of nuclear DNA in Nitraria schoberi L. seeds. Botanica Pacifica 7(1):89–92

    Article  Google Scholar 

  • Banaev EV, Tomoshevich MA, Khozyaykina SA, Erst AA, Erst AS (2023) Integrative taxonomy of Nitraria (Nitrariaceae), description of the new enigmatic species and key to all currently known species. Plants 12:593. https://doi.org/10.3390/plants12030593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banaev EV, Tomoshevich MA, Ak-Lama TA (2018a) IAPT / IOPB chromosome date 27. In: Marhold K, Breitwieser I (eds) Taxon 67(5):1042, E2. https://doi.org/10.12705/675.24

  • Barow M, Meister A (2003) Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ 26:571–584

    Article  Google Scholar 

  • Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA (2007) Correlated evolution of genome size and seed mass. New Phytol 173:422–437. https://doi.org/10.1111/j.1469-8137.2006.01919.x

    Article  PubMed  Google Scholar 

  • Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986. https://doi.org/10.1111/j.1469-8137.2008.02528.x

    Article  PubMed  Google Scholar 

  • Bennet MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses – 807 new estimates. Ann Bot 86:859–909. https://doi.org/10.1006/anbo.2000.1253

    Article  CAS  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R SocLond B Biol Sci 181:109–135

    CAS  Google Scholar 

  • Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106(Suppl):S177–S200

    Article  Google Scholar 

  • Bennett MD, Leitch I, Gregory T (2005) Genome size evolution in plants. In: Ryan G (ed) The Evolution of the Genome books. Elsevier, San Diego, pp 89–162

    Chapter  Google Scholar 

  • Bobrov EG (1946) About Asian species of the genus Nitraria L. Sov Bot 14(1):19–30 ((in Russian))

    Google Scholar 

  • Bobrov EG (1965) On the origin of flora of the deserts of the Old World in conjunction with the review of Nitraria genus. Botanicheskij Zhurnal 50(8):1053–1057 ((in Russian))

    Google Scholar 

  • Bogunic F, Muratović E, Ballian D, Brown SC (2007) Genome size stability among five subspecies of Pinus nigra Arnold s.l. Environ Exp Bot 59(3):354–360

    Article  CAS  Google Scholar 

  • Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L (2000) Relationships among genome size, environmental conditions and geographical distribution in natural populations of nw patagonian species of Berberis L. (Berberidaceae). Ann Bot 86(3):565–573

    Article  CAS  Google Scholar 

  • Bourge M, Brown S, Siljak-Yakovlev S (2018) Flow cytometry as tool in plant sciences, with emphasis on genome size and ploidy level assessment. Gen Appl 2(2):1–12

    Google Scholar 

  • Butorina AK (1989) Factors of evolution of arboreal karyotypes. Uspekhi Sovremennoy Biologii 108(6):342–357

    Google Scholar 

  • Butorina AK, Gavrilov IA (2001) Cytogenetic study of some species of the genus Tilia L. Tsitologiya 43(10):934–939

    CAS  Google Scholar 

  • Cookson SJ, Radziejwoski A, Granier C (2006) Cell and leaf size plasticity in Arabidopsis: what is the role of endoreduplication? Plant Cell Environ 29(7):1273–1283

    Article  PubMed  Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nard L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310

    Article  CAS  PubMed  Google Scholar 

  • Galbraith DW, Lambert GM, Macas J, Doležel J (1998) Analysis of nuclear DNA content and ploidy in higher plants. In: Robinson JP, Darzynkiewicz Z, Dean PN, Dressler LG, Orfao A, Rabinovitch PS, Stewart CC, Tanke HJ, Wheeless LL (eds) Current protocols in cytometry. New York, John Wiley & Sons, 7.6.1–7.6.22.

  • Gegas VC, Wargent JJ, Pesquet E, Granqvist E, Paul ND, Doonan JH (2014) Endopolyploidy as a potential alternative adaptive strategy for Arabidopsis leaf size variation in response to UV-B. J Exp Bot 65(10):2757–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greilhuber J, Dolezel J, Lysak M, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong DY (2021) Peonies of the World: Phylogeny and Evolution. Royal Botanic Gardens Kew, Richmond.

  • Il’in MM (1944) Nitraria and the origin of desert flora. Priroda 5–6:116–118 ((in Russian))

    Google Scholar 

  • Ilyin MM (1958) Flora of the deserts of Central Asia, its origin and stages of development. Mater History of Flora and Veg USSR 3:129–229 ((in Russian))

    Google Scholar 

  • Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation in Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol Biol Evol 21:860–869

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceed National Acad Sci USA 97:6603–6607

    Article  CAS  Google Scholar 

  • Khaleghi A, Khadivi A (2023) Morphological characterizations of wild nitre-bush (Nitraria schoberi L.) specimens. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-023-01635-3

    Article  Google Scholar 

  • Khalkuziev P (1990) About family ties of some plant families of desert regions. Publishing house "Fan" of the Uzbekskoy SSR, Tashkent.

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76. https://doi.org/10.1046/j.1461-0248.2002.00283.x

    Article  Google Scholar 

  • Knight CA, Molinari N, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight CA, Clancy RB, Götzenberger L, Dann L, Beaulieu JM (2010) On the relationship between pollen size and genome size. J Bot. https://doi.org/10.1155/2010/612017

    Article  Google Scholar 

  • Komarov VL (1908) Introduction to the floras of China and Mongolia. Tr S-Peterb Bot Sada 19:1–179 ((in Russian))

    Google Scholar 

  • Korovin EP (1935) Essays on the history of vegetation development in Central Asia (Central Kazakhstan). Bull SAGU 20(4). (in Russian)

  • Kunakh VA (2011) Ontogenetic plasticity of the genome as a basis for plant adaptability. Zhebrakovskiye readings. III. Transformation of genomes, 3–53.

  • Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 153–176

    Chapter  Google Scholar 

  • Lomax BH, Woodward FI, Leitch IL, Knight CA, Lake JA (2009) Genome size as a predictor of guard cell length in Arabidopsis thaliana is independent of environmental conditions. New Phytol 181:311–314. https://doi.org/10.1111/j.1469-8137.2008.02700.x

    Article  CAS  PubMed  Google Scholar 

  • Lomonosova MN, Ankova TV, Voronkova MS, Korolyuk EA, Banaev EV, Skaptsov MV (2020) Ploidy level in the representatives of Chenopodiaceae as revealed by genome size and chromosome numbers. Turczaninowia 23(1):24–31

    Article  Google Scholar 

  • Lukjanová E, Řepková J (2021) Chromosome and genome diversity in the genus Trifolium (Fabaceae). Plants 10:2518. https://doi.org/10.3390/plants10112518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysak M, Rostková A, Dixon JM, Dolezel J (2000) Limited genome size variation in Sesleria albicans. Ann Bot 86(2):399–403. https://doi.org/10.1006/anbo.2000.1200

    Article  CAS  Google Scholar 

  • Marhold K, Kučera J, Alexeeva T, Andriyanova E, An’kova TV, Astashenkov AY, Banaev EV, Chepinoga VV, Cheryomushkina VA, Dorogina OV et al (2020) IAPT chromosome data 32. Taxon 69(5):1126–1132. https://doi.org/10.1002/tax.12322

    Article  Google Scholar 

  • Marhold K, Kučera J, Albach DC, Aleksandrova TG, Banaev EV, Dyubenko TV, Gnutikov AA, Korolyuk EA, Kotseruba VV, Krivenko DA et al (2021) IAPT chromosome data 34/2. Taxon 70(5):1149

    Article  Google Scholar 

  • Marhold K, Kučera J, Aleksandrova TG, Alexeeva TV, Andriyanova EA, Banaev EV, Bobrov AA, Boltenkov EV, Bondarevich EA, Boyarskikh IG et al (2022) IAPT chromosome data 38/2. Taxon 71(6):1353–1360

    Article  Google Scholar 

  • Moeller M (2018) Nuclear DNA C-values are correlated with pollen size at tetraploid but not diploid level and linked to phylogenetic descent in Streptocarpus (Gesneriaceae). S Afr J Bot 114:323–344. https://doi.org/10.1016/j.sajb.2017.11.017

    Article  CAS  Google Scholar 

  • Muratova EN, Kvitko OV, Banaev EV, Ts-Ch Z, Wang G (2011) Karyological study of some representatives of Nitraria L. Botan Zhurn 96(1):108–115

    Google Scholar 

  • Muratova EN, Goryachkina OV, Banaev EV (2013) Karyological study of Siberian species Nitraria L. (Nitrariaceae). Turczaninowia 16(4):50–54

    Article  Google Scholar 

  • Murray BG, De Lange PJ, Ferguson AR (2005) Nuclear DNA variation, chromosome numbers and polyploidy in the endemic and indigenous grass flora of New Zealand. Ann Bot 96:1293–1305. https://doi.org/10.1093/aob/mci281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan XY, Shen GM, Chen P (1999) A preliminary research on taxonomy and systematics genus Nitraria. Acta Bot Yunnan 21(3):287–295

    Google Scholar 

  • Pan XY, Ca QD, Wei QS, Wang GX (2002) Progress of researches on systematics and biodiversity in the genus Nitraria. Chinese Acad Med J Org 4:1–6

    Google Scholar 

  • Pan XY, Wei XP, Yu QS, Chen JK, Wang GX (2003) Polyploidy: classification, evolution and applied perspective of the genus Nitraria. Chin Bull Bot 20(5):632–638

    Google Scholar 

  • Poggio L, Burghardt A, Hunziker J (1989) Nuclear DNA variation in diploid and polyploid taxa of Larrea (Zygophyllaceae). Heredity 63:321–328. https://doi.org/10.1038/hdy.1989.105

    Article  Google Scholar 

  • Popov MG (1927) The main features of the history of the development of the flora of Central Asia. Bull SAGU 15:239–293 ((in Russian))

    Google Scholar 

  • Razafinarivo NJ, Rakotomalala JJ, Brown SC, Bourge M, Hamon S, de Kochko A, Poncet V, Dubreuil-Tranchant C, Couturon E, Guyot R, Hamon P (2012) Geographical gradients in the genome size variation of wild coffee trees (Coffea) native to Africa and Indian Ocean islands. Tree Genet 8:1345–1358. https://doi.org/10.1007/s11295-012-0520-9

    Article  Google Scholar 

  • Reese G (1958) Cyto-systematische Notizen zur Gattung Nitraria (Zygophyllaceae). Flora 146(3):478–487

    Google Scholar 

  • Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321. https://doi.org/10.1093/aob/mch037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholes DR, Paige KN (2015) Plasticity in ploidy: a generalized response to stress. Trends Plant Sci 20(3):165–175. https://doi.org/10.1016/j.tplants.2014.11.00

    Article  CAS  PubMed  Google Scholar 

  • Sedelnikova TS (2015) Variability of the genome size of coniferants under extreme growth conditions. Uspekhi Sovremennoy Biologii 135(5):514–528 ((in Russian))

    Google Scholar 

  • Sheng J, Hu X, Zeng X, Li Y, Zhou F, Hu Z, Diao Y (2016) Nuclear DNA content in Miscanthus sp and the geographical variation pattern in Miscanthus lutarioriparius. Sci Rep 6(1):1–8

    Article  Google Scholar 

  • Sinjushin A (2021) The duration of the life cycle is associated with C-value and affects reproductive features in the Fabeae, the tribe with largest genomes in Fabaceae. Flora 285:151954. https://doi.org/10.1016/j.flora.2021.151954

    Article  Google Scholar 

  • Skaptsov MV, Lomonosova MN, Kutsev MG, Smirnov SV, Shmakov AI (2017) The phenomenon of endopolyploidy in some species of the Chenopodioideae (Amaranthaceae). Bot Lett 164(1):47–53. https://doi.org/10.1080/23818107.2016.1276475

    Article  Google Scholar 

  • Šmarda P, Bureš P, Horová L, Foggi B, Rossi G (2008) Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot 101(3):421–433. https://doi.org/10.1093/aob/mcm307

    Article  CAS  PubMed  Google Scholar 

  • Smarda P, Bures P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot 98:665–678. https://doi.org/10.1093/aob/mcl150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnov YuA (1968) Accelerated method for studying somatic chromosomes in fruit trees. Tsitologiya 10:1132–1134 ((in Russian))

    Google Scholar 

  • Snodgrass SJ, Jareczek J, Wendel JF (2017) An examination of nucleotypic effects in diploid and polyploid cotton. AoB Plants 9(1):plw082

    Article  PubMed  Google Scholar 

  • Sousa SM, Pierre PM, Torres GA, Davide LC, Viccini LF (2013) Relationship between pollen morphology and chromosome numbers in Brazilian species of Lippia L. (Verbenaceae). An Acad Bras Cienc 85(1):147–157

    Article  PubMed  Google Scholar 

  • Srisuwan S, Sihachakr D, Martín J, Valles J, Ressayre A, Brown SC, Siljak-Yakovlev S (2019) Change in nuclear DNA content and pollen size with polyploidisation in the sweet potato (Ipomoea batatas, Convolvulaceae) complex. Plant Biol (stuttg) 21(2):237–247. https://doi.org/10.1111/plb.12945

    Article  CAS  PubMed  Google Scholar 

  • Tarnavshi I (1948) Die chromosomenzahlen der Anthophyten-Flora von Rumanien mit einem Ausblick auf das polyploidie-Problem. Buletinul Gradinii Botanice Si Al Muzeului Botanic De La Universitatea Din Cluj 28:1–130

    Google Scholar 

  • Temirbayeva K, Zhang ML (2015) Molecular phylogenetic and biogeographical analysis of Nitraria based on nuclear and chloroplast DNA sequences. Plant Syst Evol 30:1897–1906. https://doi.org/10.1007/s00606-015-1202-5

    Article  Google Scholar 

  • Tomoshevich M, Banaev E, Khozyaykina S, Erst A (2022) Pollen morphology of some species from genus Nitraria. Plants 11:2359. https://doi.org/10.3390/plants11182359

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuler AC, Carrijo TT, Peixoto AL, Garbin ML, da Silva Ferreira MF, Carvalho CR, Spadeto MS, Clarindo WR (2019) Diversification and geographical distribution of Psidium (Myrtaceae) species with distinct ploidy levels. Trees 33:1101–1110. https://doi.org/10.1007/s00468-019-01845-2

    Article  CAS  Google Scholar 

  • Tuna GS, Duyu G, Uzun K, Yücel G, Tuna M (2017) Determination of nuclear DNA content and ploidy of Hypericum perforatum L accessions collected from Western Turkey. Tarim Bilimleri Dergisi-J Agricultural Sci 23:395–403

    Google Scholar 

  • Urdampilleta JD, Coulleri JP, Ferrucci MS, Forni-Martins ER (2012) Karyotype evolution and phylogenetic analyses in the genus Cardiospermum L. (Paullinieae, Sapindaceae). Plant Biol (Stuttg) 15(5):868–881

    Article  PubMed  Google Scholar 

  • Vasil’eva LI (1974) A new species of the genus Nitraria L. from the Pamirs. Nov Sist Vyssh Rast 11:341–344

    Google Scholar 

  • Voronkova MS, Banaev EV, Tomoshevich MA, Ak-Lama T (2018) Variation of nuclear DNA content in seeds of Nitraria schoberi L. BIO Web of Conferences 11:00046. https://doi.org/10.1051/bioconf/20181100046

    Article  Google Scholar 

  • Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM (2005) Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 93:148–156

    Article  Google Scholar 

  • Wong Ch, Murray BG (2012) Variable changes in genome size associated with different polyploid events in Plantago (Plantaginaceae). J Hered 103(5):711–719. https://doi.org/10.1093/jhered/ess049

    Article  PubMed  Google Scholar 

  • Woutersen A, Jardine Ph, Silvestro D, Bogotá-A RG, Zhang HX, Meijer N, Bouchal J, Barbolini N, Dupont-Nivet G, Koutsodendris A, Antonelli A, Hoorn C (2023) The evolutionary history of the Central Asian steppe-desert taxon Nitraria (Nitrariaceae) as revealed by integration of fossil pollen morphology and molecular data. Bot J Linn. https://doi.org/10.1093/botlinnean/boac050

    Article  Google Scholar 

  • Zakharyeva OI, Astanova SB (1968) Chromosomal numbers of some wild species of flowering plants in Central Asia. Doklady Akademii Nauk Tadzhikskoy SSR 11(11):72–75 ((in Russian))

    Google Scholar 

  • Zhang ML, Temirbayeva K, Sanderson S, Chen X (2015) Young dispersal of xerophil Nitraria lineages in intercontinental disjunctions of the Old World. Sci Rep 5:13840. https://doi.org/10.1038/srep13840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

During the preparation of this publication, materials of bioresource scientific collections of the CSBG SB RAS “Collections of living plants indoors and outdoors” (unique scientific unit USU_440534) and “Herbarium of higher plants, lichens and fungi (NS, NSK)” (USU-4450537) were used.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation program of scientific research “Theoretical and applied aspects of studying gene pools of natural plant populations and conservation of plant diversity ‘outside the typical environment’ (ex situ)” (project No. AAAA-A21-121011290027–6).

Author information

Authors and Affiliations

Authors

Contributions

EVB: conceptualization, project administration, methodology, resources, and writing–review and editing. MAT: conceptualization, writing–original draft preparation, resources, methodology, investigation, and visualization. AAE: software, visualization, and formal analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anna A. Erst.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banaev, E.V., Tomoshevich, M.A. & Erst, A.A. The nuclear DNA content, ploidy, and chromosome numbers in some species of Nitraria and associations with pollen characteristics. Genet Resour Crop Evol 71, 2843–2858 (2024). https://doi.org/10.1007/s10722-023-01811-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01811-5

Keywords

Navigation