Skip to main content
Log in

Development and application of simple sequence repeat markers based on whole-genome sequencing in Codonopsis lanceolata

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The content of medicinal components of Codonopsis pilosula differ greatly in various habitats. The development of specific molecular markers is of great significance for the identification of different cultivars of C. pilosula. In this study, 1,379,041 primer pairs were designed based on the whole genome of C. lanceolata. Of these, six pairs of primers were able to amplify polymorphic bands. We performed genetic diversity analysis and constructed a cluster tree and DNA fingerprint of the three groups: mixed, wild and cultivated C. pilosula materials. The results were as follows: first, the mixed materials had an average observed number of alleles (Na) of 7.6667, an average effective number of alleles (Ne) of 4.6058, an average Shannon's information index (I) of 1.7128, an average expected homozygosty (Exp Hom) of 0.2118, an average expected heterozygosity (Exp Het) of 0.7882, an average expected heterozygosity of Nei’s (Ht) of 0.7798, and an average gene flow (Nm) of 0.1281. Second, the cultivated accessions were as follows: Na = 4.6667, Ne = 2.5956, I = 1.0702, Exp Hom = 0.4234, Exp Het = 0.5766, Ht = 0.5755, and Nm = 0.5253. Finally, the accessions of the wild materials were as follows: Na = 5.333, Ne = 2.8769, I = 1.2771, Exp Hom = 0.3556, Exp Het = 0.6444, Ht = 0.6433, and Nm = 0.5314. In addition, the results of cluster analysis showed that mixed, wild and cultivated materials were clustered into 4, 4 and 3 subgroups, respectively. Furthermore, we performed DNA fingerprinting of 47 mixed materials. These results are valuable for the identification and genetic analysis of C. pilosula from different sources in Shanxi Province.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

SSR sequence data may be obtained from the corresponding author.

References

  • Aguilar TM, Calderón ZG, Gutiérrez Espinosa MA, Lobato Ortí R, Córdoba Téllez L, Volke Haller V, Santacruz Varela A (2019) DNA fingerprint of strawberry varieties developed at Colegio de Postgraduados. Mexico Nova Sci 11(22):186–206

    Google Scholar 

  • Aremu CO (2011) Genetic diversity: a review for need and measurements for intraspecies crop improvement. J Microbiol Biotechnol Res 1(2):80–85

    Google Scholar 

  • Arshad H, Shadma W, Moustafa M (2020) Pharmacognostic standardization and DNA fingerprinting of leaves of Datura stramonium, growing naturally in Asir region of Saudi Arabia. Pak J Pharm Sci 33(3):1155–1161

    CAS  PubMed  Google Scholar 

  • Backiyarani S, Chandrasekar A, Uma S, Saraswathi MS (2019) MusatransSSRDB (a transcriptome derived SSR database)–an advanced tool for banana improvement. J Biosci 44(1):1–10

    Article  CAS  Google Scholar 

  • Balakrishnan S, Dev SA, Sakthi AR, Vikashini B, Reshma BT, Magesh NS, Ramasamy Y (2021) Gene-ecological zonation and population genetic structure of Tectona Grandis l.f. in India revealed by genome-wide SSR markers. Tree Genet Genomes 17(4):1–14

  • Bhattarai G, Shi A, Kandel DR, Solís-Gracia N, Avila CA (2021) Genome-wide simple sequence repeats (SSR) markers discovered from whole-genome sequence comparisons of multiple spinach accessions. Sci Rep 11(1):1–16

    Article  Google Scholar 

  • Boczkowska M, Bczek K, Kosakowska O, Anna R, Wglarz Z (2020) Genome-wide diversity analysis of valeriana officinalis l. Using dart-seq derived SNP markers. Agronomy 10(9):1346

  • Chen D, Rui P, Li L, Sun N, Cai Y (2009) Study on genetic diversity of Codonopsis tangshen by SRAP and ISSR markers. Zhongguo Zhong Yao Za Zhi 34(3):255–259

    CAS  PubMed  Google Scholar 

  • Chen W, Hou L, Zhang ZY, Pang XM, Li YY (2017) Genetic diversity, population structure, and linkage disequilibrium of a core collection of Ziziphus jujuba assessed with genome-wide SNPs developed by genotyping-by-sequencing and SSR markers. Front Plant Sci 8:575

    PubMed  PubMed Central  Google Scholar 

  • Cui D, Tang C, Lu H, Li J, Han L (2021) Genetic differentiation and restricted gene flow in rice landraces from Yunnan, China: effects of isolation-by-distance and isolation-by-environment. Rice 14:(1)1–14

  • Duhan N, Meshram M, Loaiza CD, Kaundal R (2020) Citsatdb: genome-wide simple sequence repeat (SSR) marker database of citrus species for germplasm characterization and crop improvement. Genes 11:(12)1486

  • Ellstrand NC (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–241

    Article  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Finston TL, Peck SB (1995) Population structure and gene flow in Stomion: a species swarm of flightless beetles of the Galápagos Islands. Heredity 75(4):390–397

    Article  Google Scholar 

  • Freixas-Coutin JA, An S, Postman J, Bassil NV, Yates B, Shukla M, Saxena PK (2019) Development of a reliable Corylus sp. reference database through the implementation of a DNA fingerprinting test. Planta; 249(6):1863–1874

  • Gil J, Um Y, Kim S, Kim OT, Koo SC, Reddy CS, Lee Y (2017) Development of genome-wide SSR markers from Angelica gigas Nakai using next generation sequencing. Genes 8(10):238

    Article  PubMed  PubMed Central  Google Scholar 

  • González AV, Gómez-Silva V, Ramírez MJ, Fontúrbel FE (2020) Meta-analysis of the differential effects of habitat fragmentation and degradation on plant genetic diversity. Conserv Biol 34(3):711–720

    Article  PubMed  Google Scholar 

  • Graffelman J, Ortoleva L (2020) A network algorithm for the X chromosomal exact test for Hardy-Weinberg equilibrium with multiple alleles. Mol Ecol Resour 21(5):1547–1557

    Article  Google Scholar 

  • Gu C, Cao LY, Su Q, Guan LJ, Yang J, Gao JP (2016) AFLP and HPLC fingerprints analysis of Codonopsis species from original areas and the same planting base. J Chin Med Mater 39(8):1716–1722

    Google Scholar 

  • Guo WL, Gong L, Ding ZF, Li YD, Li FX, Zhao SP, Liu B (2006) Genomic instability in phenotypically normal regenerants of medicinal plant Codonopsis lanceolata Benth. et Hook. f., as revealed by ISSR and RAPD markers. Plant Cell Rep 25(9):896–906

  • Haque MS, Tabassum T, Saha NR, Islam MS (2019) DNA fingerprint and diversity in aromatic rice by Gn1 gene linked SSR markers. Progress Agric 29(4):336–344

    Article  Google Scholar 

  • Hastings A (1988) Dependence of expected heterozygosity on locus number with stabilizing selection and drift. J Theor Biol 134(1):103–112

    Article  CAS  PubMed  Google Scholar 

  • He JY, Zhu S, Komatsu K, Yukihiro G (2014) Genetic polymorphism of medicinally-used Codonopsis species in an internal transcribed spacer sequence of nuclear ribosomal DNA and its application to authenticate Codonopsis radix. J Nat Med 68(1):112–124

    Article  CAS  PubMed  Google Scholar 

  • He JY, Ma N, Zhu S, Komatsu K, Li ZY, Fu WM (2015) The genus Codonopsis (Campanulaceae): a review of phytochemistry, bioactivity and quality control. J Nat Med 69(1):1–21

    Article  PubMed  Google Scholar 

  • Holderegger R, Balkenhol N, Bolliger J, Engler JO, Gugerli F, Hochkirch A, Nowak C, Segelbacher G, Widmer A, Zachos FE (2019) Conservation genetics: linking science with practice. Mol Ecol 28(17):3848–3856

    Article  PubMed  Google Scholar 

  • Holland MM, Parson W (2011) GeneMarker® HID: a reliable software tool for the analysis of forensic STR data. J Forensic Sci 56(1):29–35

    Article  PubMed  Google Scholar 

  • Hong BG, Bao RL, Qian HW, Jia KC, Tong SZ (2007) Abundant genetic diversity in cultivated Codonopsis pilosula populations revealed by rapd polymorphisms. Genet Resour Crop Evol 54(5):917–924

    Article  Google Scholar 

  • Huang Y, Zhou N, Yang M, Shen Y, Zhang D (2019) A comparative study of the population genetics of wild and cultivated populations of Paris polyphylla var. yunnanensis based on amplified fragment length polymorphism markers. Ecol Evolut 9(18):10707–10722

  • Husband BC, Barrett SC (1995) Estimates of gene flow in Eichhornia paniculata (Pontederiaceae): effects of range substructure. Heredity 75(6):549–560

    Article  Google Scholar 

  • Hwang SG, Ju HK, Moon JC, Kim JH, Jang CS (2016) Comparative analysis of chloroplast DNA sequences of Codonopsis lanceolata and Platycodon grandiflorus and application in development of molecular markers. Appl Biol Chem 60(1):1–9

    Google Scholar 

  • Jayashree B, Reddy PT, Leeladevi Y, Crouch JH, Mahalakshmi V, Buhariwalla HK, Hoisington DA (2006) Laboratory information management software for genotyping workflows: applications in high throughput crop genotyping. BMC Bioinf 7(1):1–6

    Article  Google Scholar 

  • Kim S, Ji HJ, Chung H, Ji HK, Yi L (2016) Simple sequence repeat marker development from Codonopsis lanceolata and genetic relation analysis. J Plant Biotechnol 43(2):181–188

    Article  Google Scholar 

  • Kim S, Jo N, Gil JS, Koo SC, Um Y, Hong CP, Lee Y (2021) Development of genome-wide simple sequence repeat markers in Codonopsis lanceolata using next-generation sequencing. Hortic Environ Biotechnol 62(6):985–993

    Article  CAS  Google Scholar 

  • Kouam EB, Muluvi GM, Pasquet RS (2021) Genetic diversity and relationship between wild and cultivated cowpea [Vigna unguiculata (L.) Walp.] as assessed by allozyme markers. Agricultura Tropica et Subtropica 54(1):201–208

  • Kritika MG, Balaji C (2021) Gene flow in volant vertebrates: species biology, ecology and climate change. J Indian Inst Sci(prepublish) 101(2):165–176

  • Kwong AM, Blackwell TW, LeFaive J, De AM, Barnard J, Barnes KC, Kang HM (2021) Robust, flexible, and scalable tests for Hardy-Weinberg equilibrium across diverse ancestries. Genetics 218(1):iyab044

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J, Gil J, Um Y, Kim HB, Kim SC, Koo S, Lee Y (2017) Genetic diversity analysis of codonopsis species using codonopsis laneolata based EST-SSR markers. 한국약용작물학회 학술대회논문집 25(1):59–59

  • Levin DA, Kerster HW (1974) Gene flow in seed plants. Evol Biol 7:139–220

    Google Scholar 

  • Li L, Sun FY, Wu D, Zhen F, Bai GH, Gao DR, Li T (2017) High-throughput development of genome-wide locus-specific informative SSR markers in wheat. Sci China (life Sci) 06:671–673

    Article  Google Scholar 

  • Lin TC, Hsieh CC, Agrawal CR, Kuo CL, Chueh FS, Tsay HS (2007) ITS sequence based phylogenetic relationship of dangshen radix. J Food Drug Anal 15(4):428–432

    CAS  Google Scholar 

  • Liu SR, An YL, Li FD, Li SJ, Liu LL, Zhou QY, Zhao SQ, Wei CL (2018) Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis). Mol Breeding 38(5):1–13

    Article  Google Scholar 

  • Liu WC, Xu YT, Li ZK, Fan J, Yang Y (2019) Genome-wide mining of microsatellites in king cobra (Ophiophagus hannah) and cross-species development of tetranucleotide SSR markers in Chinese cobra (Naja atra). Mol Biol Rep 46(6):6087–6098

    Article  CAS  PubMed  Google Scholar 

  • McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31(1):353–373

    Article  Google Scholar 

  • Millar CI, Libby WJ, Falk DA, Holsinger KE (1991) Strategies for conserving clinal, ecotypic, and disjunct population diversiv in widespread species. Genet Conserv Rare Plants 149–170

  • Min XY, Zhang ZS, Liu YS, Wei XY, Liu ZP, Wang YR, Liu WX (2017) Genome-wide development of microRNA-based SSR markers in Medicago truncatula with their transferability analysis and utilization in related legume species. Int J Mol Sci 18(11):2440

    Article  PubMed  PubMed Central  Google Scholar 

  • Panchen AL (2010) Grant, v. the evolutionary process, a critical study of evolutionary theory. Columbia University Press, New York. Archiv Nat Hist 20(1):143–143

  • Park JH, Kim YH, Nou IS, Choi JE, Shim IY, Kang KK (1997) Evaluation of genetic diversity among Korean wild Codonopsis lanceolata by using RAPD. Korean J Plant Res 10(3):258–264

    Google Scholar 

  • Pourkhaloee A, Khosh-Khui M, Arens P, Salehi H, Razi H, Niazi A, Van TJ (2018) Molecular analysis of genetic diversity, population structure, and phylogeny of wild and cultivated tulips (Tulipa L.) by genic microsatellites. Hortic Environ Biotechnol; 59(6):875–888

  • Ppk A, Tj A, Kvb B (2020) Microsatellite based DNA fingerprinting and assessment of genetic diversity in bougainvillea cultivars—sciencedirect. Gene 753:144794

    Article  Google Scholar 

  • Qiang Z, Wang Y, Li S, Wang M, Luo X, Li X (2018) Efficiency of ISSR marker in assessing the genetic diversity of wild and cultivated Hedysarum polybotrys Hand. Mazz Caryologia 71(2):174–181

    Article  Google Scholar 

  • Santosh HB, Meshram M, Santhy V, Waghmare VN (2021) Microsatellite marker-based diversity analysis and DNA fingerprinting of Asiatic cotton (Gossypium arboreum) varieties of India. J Plant Biochem Biotechnol 3:1–8

    Google Scholar 

  • Shi TX, Li RY, Zheng R, Chen QF, Liang CG (2021) Mapping QTLs for 1000-grain weight and genes controlling hull type using SNP marker in Tartary buckwheat (Fagopyrum tataricum). BMC Genomics 22(1):142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236(4803):787–792

    Article  CAS  PubMed  Google Scholar 

  • Tajima F, Tokunaga T, Miyashita NT (1994) Statistical methods for estimating the effective number of alleles, expected heterozygosity and genetic distance in self-incompatibility locus. Jpn J Genet 69(3):287–295

    Article  CAS  PubMed  Google Scholar 

  • Terryana RT, Rijzaani H, Priyatno TP, Manzila I, Lestari P (2020) Construction of DNA fingerprint for chili pepper varieties using SNAP markers. IOP Conf Ser Earth Environ Sci 482(1):012038

  • Thompson BM, Binkley JM, Stewart GC (2011) Current physical and SDS extraction methods do not efficiently remove exosporium proteins from Bacillus anthracis spores. J Microbiol Methods 85(2):143–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uncu AT (2019) Genome-wide identification of simple sequence repeat (SSR) markers in capsicum Chinense Jacq with high potential for use in pepper introgression breeding. Biologia 74(2):119–126

  • Wang DY, Wang Q, Wang YL, Xiang XG, Huang LQ, Jin XH (2017) Evaluation of DNA barcodes in Codonopsis (Campanulaceae) and in some large angiosperm plant genera. PLoS ONE 12(2):e0170286

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams KR, Wasson SR, Barrett A, Greenall RF, Jones SR, Bailey EG (2021) Teaching hardy-weinberg equilibrium using population-level punnett squares: facilitating calculation for students with math anxiety. CBE life Sci Educ 20(2):ar22

  • Wilton R, Wheelan SJ, Szalay AS, Salzberg SL (2019) The Terabase search engine: a large-scale relational database of short-read sequences. Bioinformatics 35(4):665–670

    Article  CAS  PubMed  Google Scholar 

  • Xia AN, Yang AA, Meng XS, Dong GZ, Tang XJ, Lei SM, Liu YG (2022) Development and application of rose (Rosa Chinensis Jacq) SNP markers based on SLAF-seq technology. Genet Resources Crop Evolut 69(1):73–182

  • Zhang JQ, Xue SU, Qiong WU, Ding SS, Sun K (2006) Analysis of rapd on medicinal plants of Codonopsis pilosula. J Chin Med Mater 29(5):417–420

    Google Scholar 

  • Zhang L, Saha D, Zhang J, Zhao L, Zhang C (2020) Citation: genetic diversity and population structure of cannabis based on the genome-wide development of simple sequence repeat markers. Front Genet 11:958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao TM, Zheng SG, Hu YD, Zhao RX, Li HJ, Zhang XQ, Chun Z (2019) Classification of interspecific and intraspecific species by genome-wide SSR markers on dendrobium. S Afr J Bot 127:136–146

    Article  CAS  Google Scholar 

  • Zhao S, Xin T, Hou D, Pang X, Chen R, Gao J (2013) Identification of codonopsis Radix and its adulterants using the ITS/ITS2 barcodes. World Sci Technol-Mod Traditional Chin Med 421–428

Download references

Funding

This work was supported by Shanxi Provincial Program of key R & D projects (China) (No. 201903D221053), Applied Basic Research Programs of Shanxi Province (China) (No. 201901D211540), the earmarked fund for Modern Agro-industry Technology Research System (China) (No. 2021–11) and Doctoral foundation of Shanxi University of Chinese Medicine (China) (2020BK05).

Author information

Authors and Affiliations

Authors

Contributions

HZ: Conceptualization, data curation, review, editing. DZ: collection, investigation, data curation, writing-original draft. HT: collection, YZ: collection. XL: data curation. HL: data curation.

Corresponding author

Correspondence to Haixian Zhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Tian, H., Liu, X. et al. Development and application of simple sequence repeat markers based on whole-genome sequencing in Codonopsis lanceolata. Genet Resour Crop Evol 71, 651–664 (2024). https://doi.org/10.1007/s10722-023-01647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01647-z

Keywords

Navigation