Skip to main content
Log in

Population genetics informs new insights into the phytogeographic history of Juglans regia L.

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Juglans regia is an important perennial crop cultivated for its high-quality nuts and wood. It is generally believed that J. regia survived and expanded in almost completely isolated stands in Asia after the last glaciation. Humans subsequently dispersed J. regia through cultural expansion and trade. We evaluated the spatial genetic structure and genetic diversity of 2,929 J. regia samples from 150 populations using 14 Simple Sequence Repeats (SSRs) markers. Our study revealed that regions with the highest genetic diversity included Southern Asia, Western Asia, Western Europe, and China, as illustrated using a Geostatistical Inverse Distance Weighting (IDW) interpolation of observed heterozygosity (HO), expected (HE) heterozygosity (HE), percentage of polymorphic loci (PPL), the total number of alleles (NA), and Allelic richness (RS) in Arc Geographic Information System (ArcGIS). The ecological Niche Model (ENM) showed J. regia had a high probability of association with Central Asian and Eastern Asian habitats. Population genetic structure, phylogeny, and Principal Coordinate Analysis (PCoA) identified three genetic groups corresponding to three geographic sources. Turkish and Georgian populations served as a bridge between Asian populations and Europe populations. We suggest that J. regia evolved in central Asian mountain ranges ~ 65 million years ago (Mya) and dispersed across Eurasia during climate shifts (~ 65 to 3Mya). The population contracted into multiple refugia during the Last Glacial Maximum. The current distribution of J. regia across Eurasia was shaped by the cumulative effects of contraction or expansion of different refugia and human exploitation after LGM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antao T, Lopes A, Lopes RJ, Beja Pereira A, Luikart G (2008) Lositan: a workbench to detect molecular adaptation based on a FST-outlier method. BMC Bioinform 9:323

    Article  Google Scholar 

  • Aradhya M, Woeste K, Velasco D (2009) Genetic diversity, structure and differentiation in cultivated walnut (Juglans regia L.). In, VI Int Walnut Symp 861:127–132

    Google Scholar 

  • Aradhya M, VelascoD., Ibrahimov Z, Toktoraliev B, Maghradze D, Musayev, M., Bobokashvili, Z., Preece, J.E. 2017. Genetic and ecological insights into glacial refugia of walnut (Juglans regia L.). Plos One 12, e0185974

  • Bai WN, Liao WJ, Zhang DY (2010) Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from east Asia. New Phytol 188:892–901

    Article  PubMed  Google Scholar 

  • Beer R, Kaiser F, Schmidt K, Ammann B, Carraro G, Grisa E, Tinner W (2008) Vegetation history of the walnut forests in Kyrgyzstan (Central Asia): natural or anthropogenic origin? Quat Sci Rev 27:621–632

    Article  Google Scholar 

  • Beerli P (2005) Comparison of bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  PubMed  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. P Natl Acad Sci 98:4563–4568

    Article  CAS  Google Scholar 

  • Bernard A, Barreneche T, Lheureux F, Dirlewanger E (2018) Analysis of genetic diversity and structure in a worldwide walnut (Juglans regia L.) germplasm using SSR markers. PLoS ONE 13:e0208021

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Ma Q, Chen Y, Wang B, Pei D (2014) Identification of major walnut cultivars grown in China based on nut phenotypes and SSR markers. Sci Hortic 168:240–248

    Article  CAS  Google Scholar 

  • Cheviron ZA, Brumfield RT (2009) Migration selection balance and local adaptation of mitochondrial haplotypes in rufous collared sparrows (Zonotrichia capensis) along an elevational gradient. Evolution. Int J Org Evol 63:1593–1605

    Article  Google Scholar 

  • Cornille A, Giraud T, Bellard C, Tellier A, Le Cam B, Smulders M, Kleinschmit J, Roldan Ruiz I, Gladieux P (2013) Postglacial recolonization history of the European crabapple (Malus sylvestris M ill.), a wild contributor to the domesticated apple. Mol Ecol 22:2249–2263

    Article  CAS  PubMed  Google Scholar 

  • Dang M, Zhang T, Hu Y, Zhou H, Woeste KE, Zhao P (2016) De novo assembly and characterization of bud, leaf and flowers transcriptome from Juglans regia L. for the identification and characterization of new EST-SSRs. Forests 7(10):247

    Article  Google Scholar 

  • Dangl GS, Woeste K, Aradhya MK, Koehmstedt A, Simon C, Potter D, Leslie CA, McGranahan G (2005) Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut. J Am Soc Hortic Sci 130:348–354

    Article  CAS  Google Scholar 

  • Doyle J, Doyle J (1987) Genomic plant DNA preparation from fresh tissue CTAB method. Phytochem Bull 19:11–15

    Google Scholar 

  • Earl DA (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ebrahimi A, Zarei A, LawsonS., Woeste K, Smulders M (2016) Genetic diversity and genetic structure of Persian walnut (Juglans regia) accessions from 14 European, African, and Asian countries using SSR markers. Tree Genet. Genomes 12, 114. In

  • Elith J, Graham H, Anderson C, Dudík P, Ferrier R, Guisan M, Hijmans SA, Huettmann FR, Leathwick J, Lehmann A (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Feng X, Zhou H, Zulfiqar S, Luo X, Hu Y, Feng LI, Malvolti ME, Woeste K, Zhao P (2018) The phytogeographic history of common walnut in China. Front Plant Sci 21:1399

    Article  Google Scholar 

  • Freamo H, Oreilly P, Berg PR, Lien S, Boulding EG (2011) Outlier SNPs show more genetic structure between two bay of fundy metapopulations of Atlantic salmon than do neutral SNPs. Mol Ecol Resour 11:254–267

    Article  PubMed  Google Scholar 

  • Fréville H, Justy F, Olivieri I (2001) Comparative allozyme and microsatellite population structure in a narrow endemic plant species, Centaurea corymbosa Pourret (Asteraceae). Mol Ecol 10:879–889

    Article  PubMed  Google Scholar 

  • Fyfe RM, De Beaulieu JL, Binney H, Bradshaw RH, Brewer S, Le Flao A, Finsinger W, Gaillard MJ, Giesecke T, Romera G (2009) The European pollen database: past efforts and current activities. Veg Hist Archaeobot 18:417–424

    Article  Google Scholar 

  • Gobert S (2012) Fresh water ostracods as paleoenvironmental proxies in the Moervaart depression, a palaeo lake in sandy flanders (NW Belgium). Thesis submitted to the University of Ghent, Belgium

    Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Gunn BF, Aradhya M, Salick JM, Miller AJ, Yongping Y, Lin L, Xian H (2010) Genetic variation in walnuts (Juglans regia and J. sigillata; Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan. China Am J Bot 97:660–671

    Article  PubMed  Google Scholar 

  • Han H, Woeste KE, Hu Y, Dang M, Zhang T, Gao XX, Zhou H, Feng X, Zhao G, Zhao P (2016) Genetic diversity and population structure of common walnut (Juglans regia) in China based on EST-SSRs and the nuclear gene phenylalanine ammonia lyase (PAL). Tree Genet Genomes 12:111

    Article  Google Scholar 

  • Helyar SJ, Hemmer HJ, Bekkevold D, Taylor M, Ogden R, Limborg M, Cariani A, Maes G, Diopere E, Carvalho G (2011) Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11:123–136

    Article  PubMed  Google Scholar 

  • Hemery GE, Popov SI (1998) The walnut (Juglans regia L.) forests of Kyrgyzstan and their importance as a genetic resource. Commonw for Rev 251:272–276

    Google Scholar 

  • Hemery G, Savill P, Thakur A (2005) Height growth and flushing in common walnut (Juglans regia L.): 5 year results from provenance trials in Great Britain. Forestry 78:121–133

    Article  Google Scholar 

  • Hengl T (2009) A practical guide to geostatistical mapping. Hengl Amsterdam

  • Holland MM, Parson W (2011) GeneMarker® HID: a reliable software tool for the analysis of forensic STR data. J Forensic Sci 56:29–35

    Article  PubMed  Google Scholar 

  • Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981

    Article  CAS  PubMed  Google Scholar 

  • Maguire T, Peakall R, Saenger P (2002) Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theor Appl Genet 104:388–398

    Article  CAS  PubMed  Google Scholar 

  • Malvolti M, Taurchini D, Fineschi S, Beritognolo I, Maccaglia E, Cannata F, Fornari B (1999) Isozyme and organellar DNA analysis of genetic diversity in natural/naturalised European and Asiatic walnut (Juglans regia L.) populations. In, IV Int Walnut Symp 544:167–178

    Google Scholar 

  • Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621

    Article  PubMed  Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • McGranahan G, Leslie C (1991) Walnuts (Juglans). Genet Resour Temp Fruit Nut Crops 290:907–974

    Google Scholar 

  • Miller HC, Allendorf F, Daugherty CH (2010) Genetic diversity and differentiation at MHC genes in island populations of tuatara (Sphenodon spp.). Mol Ecol 19:3894–3908

    Article  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. P Natl Acad Sci 70:3321–3323

    Article  CAS  Google Scholar 

  • Ornelas JF, Gándara E, Vásquez Aguilar AA, Ramírez Barahona S, Ortiz Rodriguez AE, González C, Saules MTM, Ruiz SE (2016) A mistletoe tale: postglacial invasion of Psittacanthus chiedeanus (Loranthaceae) to Mesoamerican cloud forests revealed by molecular data and species distribution modeling. BMC Evol Biol 16:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pollegioni P, Woeste K, Major A, Scarascia Mugnozza G, Malvolti ME (2009) Characterization of Juglans nigra (L.), Juglans regia (L.) and Juglans x intermedia (Carr.) by SSR markers: a case study in Italy. Silvae Genet 58:68–78

    Article  Google Scholar 

  • Pollegioni P, Woeste K, Olimpieri I, Marandola D, Cannata F, Malvolti ME (2011) Long term human impacts on genetic structure of Italian walnut inferred by SSR markers. Tree Genet Genomes 7:707–723

    Article  Google Scholar 

  • Pollegioni P, Woeste KE, Chiocchini F, Olimpieri I, Tortolano V, Clark J, Hemery GE, Mapelli S, Malvolti ME (2014) Landscape genetics of Persian walnut (Juglans regia L.) across its Asian range. Tree Genet Genomes 10:1027–1043

    Article  Google Scholar 

  • Pollegioni P, Woeste KE, Chiocchini F, Del Lungo S, Olimpieri I, Tortolano V, Clark J, Hemery GE, Mapelli S, Malvolti ME (2015) Ancient humans influenced the current spatial genetic structure of common walnut populations in Asia. PLoS ONE 10:e0135980

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollegioni P, Woeste K, Chiocchini F, Del Lungo S, Ciolfi M, Olimpieri I, Tortolano V, Clark J, Hemery GE, Mapelli S (2017) Rethinking the history of common walnut (Juglans regia L.) in Europe: Its origins and human interactions. PLoS ONE 12:e0172541

    Article  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rink G, Carroll ER, Kung FH (1989) Estimation of Juglans nigra L. mating system parameters. For Sci 35:623–627

    Google Scholar 

  • Roor W, Konrad H, Mamadjanov D, Geburek T (2017) Population differentiation in common walnut (Juglans regia L.) across major parts of its native range insights from molecular and morphometric data. J Hered 108:391–404

    Article  PubMed  Google Scholar 

  • RosenbergN A (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619

    Article  Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368

    Article  PubMed  Google Scholar 

  • Takezaki N, Nei M, Tamura K (2009) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752

    Article  PubMed  PubMed Central  Google Scholar 

  • Team RC (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http .www.R-project.org

  • Torokeldiev N, Ziehe M, Gailing O, Finkeldey R (2019) Genetic diversity and structure of natural Juglans regia L. populations in the southern Kyrgyz Republic revealed by nuclear SSR and EST-SSR markers. Tree Genet Genomes 15:1–12

    Article  Google Scholar 

  • Tsuda Y, Nakao K, Ide Y, Tsumura Y (2015) The population demography of B. etula maximowicziana, a cool temperate tree species in Japan, in relation to the last glacial period: its admixture like genetic structure is the result of simple population splitting not admixing. Mol Ecol 24:1403–1418

    Article  CAS  PubMed  Google Scholar 

  • Turvey ST, Tong H, Stuart AJ, Lister AM (2013) Holocene survival of late pleistocene megafauna in China: a critical review of the evidence. Quat Sci Rev 76:156–166

    Article  Google Scholar 

  • Vahdati K (2013) Traditions and folks for walnut growing around the silk road. In: international symposium on fruit sulture and its traditional knowledge along silk road countries 1032: 19-24

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wang WT, Xu B, Zhang DY, Bai WN (2016) Phylogeography of postglacial range expansion in Juglans mandshurica (Juglandaceae) reveals no evidence of bottleneck, loss of genetic diversity, or isolation by distance in the leading edge populations. Mol Phylogenet Evol 102:255–264

    Article  CAS  PubMed  Google Scholar 

  • Waples RS, Gaggiotti O (2006) INVITED REVIEW: what is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  CAS  PubMed  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolut Int J Org Evolut 62:2868–2883

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611

    Google Scholar 

  • Weckerle C, Huber FK, Yang Y, Song W (2005) Walnuts among the Shuhi in Shuiluo, eastern Himalayas. Econ Bot 59:287–290

    Article  Google Scholar 

  • Woeste K, Burns R, Rhodes O, Michler C (2002) Thirty polymorphic nuclear microsatellite loci from black walnut. J Hered 93:58–60

    Article  CAS  PubMed  Google Scholar 

  • Woeste K, Michler C (2011) Juglans. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, forest trees. Springer, Berlin

    Google Scholar 

  • Yuan XY, Sun YW, Bai XR, Dang M, Feng XJ, Zulfiqar S, Zhao P (2018) Population structure, genetic diversity, and gene introgression of two closely related walnuts (Juglans regia and J. sigillata) in southwestern China revealed by EST-SSR markers. Forests 9:646

    Article  Google Scholar 

  • Zhao P, Woeste KE (2011) DNA markers identify hybrids between butternut (Juglans cinerea L.) and Japanese walnut (Juglans ailantifolia Carr.). Tree Genet Genomes 7:511–533

    Article  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of Plants in the old world: the origin and spread of domesticated plants in Southwest Asia, Europe, and the mediterranean Basin. Oxford University Press on Demand, Oxford

    Book  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSP-2023R369), King Saud University, Riyadh, Saudi Arabia.

Funding

This work was supported by the National Natural Science Foundation of China (No. 41471038; No. 31200500), the Program for Excellent Young Academic Backbones funding by Northwest University, Shaanxi Academy of Science Research Funding Project (2019 K-06), and Natural Science Foundation of Shaanxi Province of China (2019JM-008). We thank N. Hou, Y. L. Xu, N. Lin, and L. Wang for assisting with sampling. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that also may be suitable.

Author information

Authors and Affiliations

Authors

Contributions

PZ conceived the idea and conducted research. The investigation was carried out by HK and IU. Data analysis was carried out by HK, KW, ME. M, MY. K A. A, UZ, and SF provided technical expertise. AA, SS, IU, MY, and KW helped in the writing of the original draft. AI. G, A A. M and FC helped in literature improvement, data re-analysis, language modification, funding acquisition and revision of manuscript. All authors carefully read, revise, and approved the article for submission.

Corresponding authors

Correspondence to Umar Zeb, Ming Yue or Peng Zhao.

Ethics declarations

Conflict of interest

There is no conflict of interest and all the authors have significantly contributed to the overall manuscript preparation.

Ethics approval

Experimental research and field studies on plants (either cultivated or wild), including the collection of plant material, complied with relevant institutional, national, and international guidelines and legislation. We also took appropriate permission from the relevant research section of the University during the specimens’ collection and experimentation. We confirm that during the collection and execution of the experiment, the authors have complied with the IUCN Statement on Research Involving Species at Risk of Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 1931 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Ullah, I., Woeste, K. et al. Population genetics informs new insights into the phytogeographic history of Juglans regia L.. Genet Resour Crop Evol 70, 2263–2278 (2023). https://doi.org/10.1007/s10722-023-01597-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01597-6

Keywords

Navigation