Skip to main content

Advertisement

Log in

Physiological characterization of wild cornelian cherry genotypes in terms of phenolic compounds, organic acids and antioxidants

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

It is of great importance that people eat healthy in order to reduce the negative effects of ecological changes and technological developments in the world. Therefore, the interest in fruits, which are rich in biochemical contents, is increasing day by day. Among these fruit types, cornelian cherry has an important potential. In this study, antioxidant, total monomeric anthocyanin, phenolic compounds, organic acids and vitamin C contents of fruits belonging to 25 cornelian cherry genotypes were determined. Principal component and cluster analyzes were performed to determine the correlation between compounds. In the study, when the organic acid content of the fruits was examined, it was seen that tartaric acid and citric acid followed this acid with the highest malic acid content. It was determined that ellagic acid, catechin and chlorogenic acid, which are specific phenolics, are generally higher than other phenolic compounds. Total anthocyanin content showed great variation between genotypes and ranged from 3.79 µg cy-3-glu/g (14BL06) to 77.65 µg cy-3-glu/g. TEAC values were determined between 4.14 and 11.03 µmol TE/g and FRAP values are between 3.37 and 10.50 µmol TE/g. According to principal component analysis, the correlation between total antioxidant, total phenolic and total anthocyanins was 94.70%. While the correlation between phenolic compounds was determined as 42.40%, it was determined that the correlation between organic acids was 59%. As a result, it has been revealed that cornelian cherry gene sources are rich in biochemical contents and can be used effectively in functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen ØM (2001) Anthocyanins. Encyclop Life Sci. https://doi.org/10.1038/npg.els.0001909

    Article  Google Scholar 

  • Badalica-Petrescu M, Dragan S, Ranga F, Fetea F, Socaciu C (2014) Comparative HPLC-DAD-ESI (+) MS fingerprint and quantification of phenolic and flavonoid composition of aqueous leaf extracts of Cornus mas and Crataegus monogyna, in relation to their cardiotonic potential. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42(1):9–18

    Article  CAS  Google Scholar 

  • Bayram HM, Öztürkcan SA (2020a) Bioactive components and biological properties of Cornelian cherry (Cornus mas L.): a comprehensive review. J Funct Foods 75:1–27

    Article  Google Scholar 

  • Bayram HM, Öztürkcan SA (2020b) Antosiyanince zengin kiraz grubu meyvelerin insan sağlığı üzerine etkilerini inceleyen klinik çalışmalara bir bakış. Igusabder 11:230–254

    Article  Google Scholar 

  • Baytop T (1984) Türkiye’de bitkilerle tedavi. İstanbul Üniversitesi Eczacılık Fakültesi Yayınları 40:298–299

    Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Bevilacqua AE, Califano AN (1989) Determination of organic acids in dairy products by high performance liquid chromatography. J Food Sci 54(4):1076–1076

    Article  CAS  Google Scholar 

  • Blando F, Oomah BD (2019) Sweet and sour cherries: Origin, distribution, nutritional composition and health benefits. Trends Food Sci Technol 86:517–529

    Article  CAS  Google Scholar 

  • Brindza P, Horcin V, Brindza J, Tóth D, Gazo J, Holecyová J (2005) Cornelian cherry (Cornus mas L.) as alternative species for utilization in diet, landscape architecture and pharmacy. In proceedings of the seventh international botanical congress, Vienna, Austria, July pp 17–23

  • Celep E, Aydın A, Yesilada E (2012) A comparative study on the in vitro antioxidant potentials of three edible fruits: Cornelian cherry, Japanese persimmon and cherry laurel. Food Chem Toxicol 50(9):3329–3335

    Article  CAS  PubMed  Google Scholar 

  • Cemeroğlu B (2007) Gıda analizleri. Gıda Teknolojisi Dergisi Yayınları 34:168–171

    Google Scholar 

  • Cosmulescu S, Trandafir I, Cornescu F (2019) Antioxidant capacity, total phenols, total flavonoids and colour component of cornelian cherry (Cornus mas L.) wild genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(2):390–394

    Article  CAS  Google Scholar 

  • Czerwinska ME, Melzig MF (2018) Cornus mas and Cornus officinalis—analogies and differences of two medicinal plants traditionally used. Front Pharmacol 9:1–28

    Article  Google Scholar 

  • De Biaggi M, Donno D, Mellano MG, Riondato I, Rakotoniaina EN, Beccaro GL (2018) Cornus mas (L.) fruit as a potential source of natural health-promoting compounds: physico-chemical characterisation of bioactive components. Plant Foods Human Nutrition 73(2):89–94

    Article  Google Scholar 

  • Demir F, Kalyoncu IH (2003) Some nutritional, pomological and physical properties of cornelian cherry (Cornus mas L.). J Food Eng 60:335–341

    Article  Google Scholar 

  • Dinda B, Kyriakopoulos AM, Dinda S, Zoumpourlis V, Thomaidis NS, Velegraki A, Markopoulos C, Dinda M (2016) Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J Ethnopharmacol 193:670–690

    Article  CAS  PubMed  Google Scholar 

  • Dragovic-Uzelac V, Levaj B, Bursac D, Pedisic S, Radojcic I, Bisko A (2007) Total phenolics and antioxidant capacity assays of selected fruits. Agric Conspec Sci 72(4):279–284

    Google Scholar 

  • Enache IM, Benito-Román Ó, Coman G, Vizireanu C, Stănciuc N, Andronoiu DG, Mihalcea L, Sanz MT (2021a) Extraction optimization and valorization of the cornelian cherry fruits extracts: evidence on antioxidant activity and food applications. Appl Sci 11(22):10729

    Article  CAS  Google Scholar 

  • Enache IM, Coman G, Roșca S, Vizireanu C, Mihalcea L (2021b) The optimization of a conventional extraction of bioactive compounds from Cornus mas by RSM and the determination of favourability factors by GIS technique. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(2)

  • Fadda A, Mulas M (2010) Chemical changes during myrtle (Myrtus communis L.) fruit development and ripening. Sci Hortic 125(3):477–485

    Article  CAS  Google Scholar 

  • Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Current protocols in food analytical chemistry (1):F1–2. https://doi.org/10.1002/0471142913.faf0102s00

  • Gómez-Maqueo A, Escobedo-Avellaneda Z, Welti-Chanes J (2020) Phenolic compounds in mesoamerican fruits—characterization, health potential and processing with innovative technologies. Int J Mol Sci 21(21):1–41

    Article  Google Scholar 

  • Güzel N (2021) Morphometric and physico-chemical properties of cornelian cherry (Cornus mas L.) grown in Çorum, Turkey. Akademik Gıda 19(4):373–380

    Article  Google Scholar 

  • Hassanpour H, Yousef H, Jafar H, Mohammad A (2011) Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Sci Hortic 129(3):459–463

    Article  CAS  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7(7):1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islamovic A, Mlaco M, Berbic N, Begic-Akagic A, Orucevic S, Bulbulusic A, Ekeberg D, Drkenda P (2014) Seasonal variation of the physical and chemical parameters of wild genotypes of cornelian cherry (Cornus mas L.). J Int Sci Publ Agric Food 2:466–471

    Google Scholar 

  • Jurečková Z, Diviš P, Cetkovská J, Vespalcová M, Pořízka J, Reznicek V (2021) Fruit characteristics of different varieties of cornelian cherry (Cornus mas L.) cultivated in the Czech republic. Erwerbs-Obstbau 63:143–149

    Article  Google Scholar 

  • Kazimierski M, Regula J, Molska M (2019) Cornelian cherry (Cornus mas L.)–characteristics, nutritional and pro–health properties. Acta Scientiarum Polonorum Technologia Alimentaria 18:5–12

    CAS  PubMed  Google Scholar 

  • Kelley DS, Adkins Y, Laugero KD (2018) A review of the health benefits of cherries. Nutrients 10(3):368

    Article  PubMed  PubMed Central  Google Scholar 

  • Klimenko S (2004) The cornelian cherry (Cornus mas L.): Collection, preservation, and utilization of genetic resources. J Fruit Ornamental Plant Res 12:93–98

    Google Scholar 

  • Krivoruchko E, Samoilova V, Kovalev V (2011) Constituent composition of essential oil from Cornus mas flowers. Chem Nat Compd 47(4):646–647

    Article  CAS  Google Scholar 

  • Kucharska AZ, Szumny A, Sokół-Łętowska A, Zając K (2009) Fatty acid compositions of seed oils of cornelian cherry (Cornus mas L.). Acta Biochim Pol 56(2):21–22

    Google Scholar 

  • Kucharska AZ, Szumny A, Sokół-Łętowska A, Piórecki N, Klymenko SV (2015) Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. J Food Compos Anal 40:95–102

    Article  CAS  Google Scholar 

  • Kutlu N, Isci A, Sakiyan O, Yilmaz AE (2021a) Extraction of phenolic compounds from cornelian cherry (Cornus mas L.) using microwave and ohmic heating assisted microwave methods. Food Bioprocess Technol 14:650–664

    Article  CAS  Google Scholar 

  • Kutlu N, Isci A, Sakiyan O, Yilmaz AE (2021b) Effect of ohmic heating on ultrasound extraction of phenolic compounds from cornelian cherry (Cornus mas). J Food Process Preserv 45(10):e15818

    Article  CAS  Google Scholar 

  • Laleh GH, Frydoonfar H, Heidary R, Jameei R, Zare S (2006) The effect of light temperature, pH and species on stability of anthocyanin pigments in four berneris species. Pak J Nutr 5:90–92

    Google Scholar 

  • Mattheis JP, Rudell DR, Buchanan DA (2004) Ethylene intensifies but is not a requirement for methyl jasmonate-enhanced anthocyanin synthesis by “fuji” apple fruit. Acta Hort 636:455–460

    Article  CAS  Google Scholar 

  • Odžaković B, Sailović P, Bodroža D, Kojić V, Jakimov D, Kukric Z (2021) Bioactive components and antioxidant, antiproliferative, and antihyperglycemic activities of wild cornelian cherry (Cornus mas L.). Food Chem 40(2): 221–230

  • Özgen M, Reese RN, Tulio AZ, Miller AR, Scheerens JC (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2’-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54:1151–1157

    Article  PubMed  Google Scholar 

  • Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis GR (2007) Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and cornelian cherries. Food Chem 102(3):777–783

    Article  CAS  Google Scholar 

  • Petkova N, Ognyanov MH (2018) Phytochemical characteristics and in vitro antioxidant activity of fresh, dried and processed fruits of cornelian cherries (Cornus mas L.). Bul Chem Commun 50:302–307

    Google Scholar 

  • Popovic BM, Stajner D, Slavko K, Sandra B (2012) Antioxidant capacity of cornelian cherry (Cornus mas L.)—comparison between permanganate reducing antioxidant capacity and other antioxidant methods. Food Chem 134:734–741

    Article  CAS  PubMed  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  PubMed  Google Scholar 

  • Rivero-Perez MD, Muniz P, Gonzalez-Sanjose ML (2007) Antioxidant profile of red wines evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies. J Agric Food Chem 55(14):5476–5483

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Delgado MA, Malovana S, Perez JP, Borges T, Montelongo FG (2001) Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J Chromatogr A 912(2):249–257

    Article  CAS  PubMed  Google Scholar 

  • Rop O, Mlcek J, Kramarova D, Jurikova T (2010) Selected cultivars of cornelian cherry (Cornus mas L.) as a new food source for human nutrition. Afr J Biotechnol 9(8):1205–1210

    Article  CAS  Google Scholar 

  • Savran HS (1999) Nar suyunda organik asit dağılımı. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Türkiye

  • Seçim Y (2017) Türk mutfağında kullanılan bazı fonksiyonel gıdalar ve özellikleri. Uluslararası Global Turizm Dergisi 2(1):1–9

    Google Scholar 

  • Singleton VL, Rossi JL (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    Article  CAS  Google Scholar 

  • Spychaj R, Kucharska AZ, Szumny A, Przybylska D, Pejcz E, Piorecki N (2021) Potential valorization of cornelian cherry (Cornus mas L.) stones: roasting and extraction of bioactive and volatile compounds. Food Chem 358:129802

    Article  CAS  PubMed  Google Scholar 

  • Stankovic MS, Zia-Ul-Haq M, Bojovic BM, Topuzovic MD (2014) Total phenolics, flavonoid content and antioxidant power of leaf, flower and fruits from cornelian cherry (Cornus mas L.). Bulgarian J Agric Sci 20(2):358–363

    Google Scholar 

  • Szczepaniak OM, Kobus-Cisowska J, Kusek W, Przeor M (2019) Functional properties of cornelian cherry (Cornus mas L.): a comprehensive review. Eur Food Res Technol 245:2071–2087

    Article  CAS  Google Scholar 

  • Tural S, Koca I (2008) Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L) grown in Turkey. Sci Hortic 116(4):362–366

    Article  CAS  Google Scholar 

  • TÜİK (2016) Agricultural structure production, price, value (Publishing Turkish Statistical Institute Web, 2016). Accessed 11 August 2016. https://data.tuik.gov.tr

  • TÜİK (2021) Agricultural structure production (Publishing Turkish Statistical Institute Web, 2021). https://data.tuik.gov.t. Accessed 22 April 2021.

  • Urbstaite R, Raudone L, Janulis V (2022) Phytogenotypic anthocyanin profiles and antioxidant activity variation in fruit samples of the American cranberry (Vaccinium macrocarpon Aiton). Antioxidants 11(2):250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham H (2016) Ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Yarılgaç T, Kadimand H, Ozturk B (2019) Role of maturity stages andmodified-atmosphere packaging on the qualityattributes of cornelian cherry fruits (Cornus mas L.) throughout shelf life. J Sci Food Agric 99:421–428

    Article  PubMed  Google Scholar 

  • Yılmaz KU, Ercişli S, Zengin Y, Şengül M, Kafkas EY (2009) Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chem 114(2):408–412

    Article  Google Scholar 

  • Zia MP, Alibas I (2021) The effect of different drying techniques on color parameters, ascorbic acid content, anthocyanin and antioxidant capacities of cornelian cherry. Food Chem 364:130358

    Article  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by the Scientific Research Projects of Bolu Abant İzzet Baysal University.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AT: Conceptualization, Methodology, Investigation, Supervision, Experiment, Writing – original draft. AT: Investigation, Experiment, Resources. MG: Conceptualization, Methodology, Formal analysis, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Muttalip Gundogdu.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taş, A., Gundogdu, M. Physiological characterization of wild cornelian cherry genotypes in terms of phenolic compounds, organic acids and antioxidants. Genet Resour Crop Evol 70, 2491–2509 (2023). https://doi.org/10.1007/s10722-023-01578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01578-9

Keywords

Navigation