Skip to main content

The ancient DNA and archaeobotanical analysis suggest cultivation of Triticum aestivum subsp. spelta at Yumuktepe and Yenikapı Pottery Neolithic sites in Turkey

Abstract

Archaeobotanical materials subject to aDNA analysis were recovered from Yumuktepe and Yenikapı, two important archaeological sites in Anatolia and date back to the Pottery Neolithic Period i.e., 7th millennium BC. Many charred ancient seeds representing various cereal species including a great number of wheat grains were documented in mentioned sites. Among the cereal seeds, charred wheat samples were tentatively identified as Triticum aestivum subsp. spelta L. or Triticum new glume wheat (NGW) or atypical emmer or naked wheat in Yumuktepe and Yenikapı showed similarities with the morphological characteristics of T. aestivum subsp. spelta wheat, but it was difficult to reach a firm conclusion. This study aimed to provide genetic data to enable more precise identification of charred wheat seeds using an ancient DNA (aDNA) approach. aDNAs were successfully extracted from the representative charred seeds of T. aestivum subsp. spelta or NGW or atypical emmer or naked wheat. The PCR amplification of 26SrDNA and IGS gene regions with aDNA was carried out and sequenced. The expected product sizes of IGS 158 bp for the D genome and 87 bp for the A or B genomes and DNA sequence comparisons with other wheat species revealed that T. aestivum subsp. spelta or NGW or atypical emmer or naked wheat samples included the D genome from Aegilops tauschii and is more likely to be T. aestivum subsp. spelta. The discovery of T. aestivum subsp. spelta grains in the Yenikapı and Yumuktepe suggest that the cultivation of hexaploid wheat was widespread. Further, spelta hulled wheat, which is the progenitor of the hexaploid wheat, might have been cultivated in these settlements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Abbo S, Zezak I, Schwartz E, Lev-Yadun S, Gopher A (2008a) Experimental harvesting of wild peas in Israel: implications for the origins of Near East farming. J Archaeol Sci 35:922–929. https://doi.org/10.1016/j.jas.2007.06.016

    Article  Google Scholar 

  • Abbo S, Zezak I, Schwartz E, Lev-Yadun S, Kerem Z, Gopher A (2008b) Wild lentil and chickpea harvest in Israel: bearing on the origins of Near East farming. J Archaeol Sci 35:3172–3177. https://doi.org/10.1016/j.jas.2008.07.004

    Article  Google Scholar 

  • Abbo S, Lev-Yadun S, Gopher A (2010) Yield stability: an agronomic perspective on the origin of Near Eastern agriculture. Veget Hist Archaeobot 19:143–150. https://doi.org/10.1007/s00334-009-0233-7

    Article  Google Scholar 

  • Abbo S, Lev-Yadun S, Gopher A (2011) Origin of Near Eastern plant domestication: homage to Claude Levi-Strauss and ‘La Pensée Sauvage.’ Genet Resour Crop Evol 58:175–179. https://doi.org/10.1007/s10722-010-9630-0

    Article  Google Scholar 

  • Abbo S, Lew-Yadun S, Gopher A (2012) Plant domestication and crop evolution in the Near East; on events and processes. Crit Rev Plant Sci 31:241–257. https://doi.org/10.1080/07352689.2011.645428

    Article  Google Scholar 

  • Akeret Ö (2005) Plant remains from a Bell Beaker site in Switzerland and the beginnings of Triticum spelta (spelt) cultivation in Europe. Veget Hist Archaeobot 14(4):279–286. https://doi.org/10.1007/s00334-005-0071-1

    Article  Google Scholar 

  • Algan O, Yalçın MN, Yılmaz Kırcı-Elmas İ , Sarı E, Ongan D, Bulkan-Yeşiladalı Perinçek ÖD, Özdoğan M, Yılmaz Y, Karamut İ (2008) Antik Theodosius Limanı’nın (Yenikapı) Jeoarkeolojisi. In: Kocabaş U (Eds) İstanbul Arkeoloji Müzeleri1 Marmaray-Metro kazıları Sempozyumu Bildirileri Kitabı İstanbul, pp 175–180

  • Allaby RG, Jones MK, Brown TA (1994) DNA in charred wheat grains from the Iron Age hillfort at Danebury England. Antiquity 68(258):126. https://doi.org/10.1017/S0003598X00046263

    Article  Google Scholar 

  • Allaby RG, O’Donoghue K, Sallares R, Jones MK, Brown TA (1997) Evidence for the survival of ancient DNA in charred wheat seeds from European archaeological sites. Anc Biomol 1(2):119–129

    CAS  Google Scholar 

  • Allaby RG, Banerjee M, Brown TA (1999) Evolution of the high molecular weight glutenin loci of the A B D and G genomes of wheat. Genome 42(2):296–307. https://doi.org/10.1139/g98-114

    CAS  Article  PubMed  Google Scholar 

  • Allaby RG, Brown TA (2003) AFLP data and the origins of domesticated crops. Genome 46(3):448–453. https://doi.org/10.1139/g03-025

    CAS  Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    CAS  Article  PubMed  Google Scholar 

  • Andrews AC (1964) The genetic origin of spelt and related wheats. Der Züchter 34:17–22. https://doi.org/10.1007/BF00712097

    Article  Google Scholar 

  • Bilgic H, Hakki EE, Pandey A, Khan MK, Akkaya MS (2016) Ancient DNA from 8400-year-old Çatalhöyük wheat: implications for the origin of Neolithic agriculture. PLoS ONE 11(3):e0151974. https://doi.org/10.1371/journal.pone.0151974

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Binford LR (1968) Post-pleistocene adaptations in new perspectives in archaeology. In: Binford LR, Binford SR (eds) Chicago, pp 313–342

  • Blatter RH, Jacomet S, Schlumbaum A (2002) Little evidence for the preservation of a single-copy gene in charred archaeological wheat. Anc Biomol 4(2):65–77. https://doi.org/10.1080/1358612021000010677

    CAS  Article  Google Scholar 

  • Blatter RHE, Jacomet S, Schlumbaum A (2004) About the origin of European spelt (Triticum spelta L): allelic differentiation of the HMW Glutenin B1–1 and A1–2 subunit genes. Theor Appl Genet 108:360–367. https://doi.org/10.1007/s00122-003-1441-7

    CAS  Article  PubMed  Google Scholar 

  • Bogaard A et al (2021) Reconsidering domestication from a process archaeology perspective. World Archaeol. https://doi.org/10.1080/00438243.2021.1954990

    Article  Google Scholar 

  • Braadbaart FF, Van Bergen PF (2004) Digital imaging analysis of the shape and size of wheat and pea upon heating under anoxic conditions as a function of the temperature. Veget Hist Archaeobot 14(1):67–75. https://doi.org/10.1007/s00334-004-0050-y

    Article  Google Scholar 

  • Brown TA, Brown KA (1994) Ancient DNA: using molecular biology to explore the past. BioEssays 16(10):719–726. https://doi.org/10.1002/bies.950161006

    CAS  Article  PubMed  Google Scholar 

  • Brown TA, Allaby RG, Sallares R, Jones G (1998) Ancient DNA in charred wheats: taxonomic identification of mixed and single grains. Anc Biomol 2(2):185

    CAS  Google Scholar 

  • Brown TA (1999) How ancient DNA may help in understanding the origin and spread of agriculture. Philos Trans R Soc Lond Ser B Biol Sci 354(1379):89–98. https://doi.org/10.1098/rstb.1999.0362

    CAS  Article  Google Scholar 

  • Brown TA, Cappellini E, Kistler L et al (2015) Recent advances in ancient DNA research and their implications for archaeobotany. Veget Hist Archaeobot 24:207–214. https://doi.org/10.1007/s00334-014-0489-4

    Article  Google Scholar 

  • Caneva I (2012) Mersin-Yumuktepe in the Seventh Millennium BC: an updated view. In: Özdoğan M, Başgelen N, Kuniholm P (eds) The Neolithic in Turkey New excavation new research Central Anatolia, Istanbul pp 1–29

  • Castillo CC, Tanaka K, Sato YI, Ishikawa R, Bellina B, Higham C et al (2016) Archaeogenetic study of prehistoric rice remains from Thailand and India: evidence of early japonica in South and Southeast Asia. Archaeol Anthropol Sci 8(3):523–543

    Article  Google Scholar 

  • Cauvin J (1989) La Néolithisation du Levant huit ans après in Paléorient 15/1(Eds) pp 174–178

  • Ciftci A, Değirmenci FO, Luke C, Roosevelt CH, Marston JM, Kaya Z (2019) Ancient DNA (aDNA) extraction and amplification from 3500-year-old charred economic crop seeds from Kaymakçı in Western Turkey: comparative sequence analysis using the 26S rDNA gene. Genet Resour Crop Evol 66(6):1279–1294. https://doi.org/10.1007/s10722-019-00783-9

    CAS  Article  Google Scholar 

  • Cohen MN (1977) The food crisis in prehistory. Yale University Press, London

    Google Scholar 

  • Czajkowska BI, Bogaard A, Charles M, Jones G, Kohler-Schneider M, Mueller-Bieniek A, Brown TA (2020) Ancient DNA typing indicates that the “new” glume wheat of early Eurasian agriculture is a cultivated member of the Triticum timopheevii group. J Archaeol Sci 123:105258. https://doi.org/10.1016/j.jas.2020.105258

    CAS  Article  Google Scholar 

  • Dagnall CL, Morton LM, Hicks BD et al (2018) Successful use of whole genome amplified DNA from multiple source types for high-density Illumina SNP microarrays. BMC Genomics 19(1):182. https://doi.org/10.1186/s12864-018-4572-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Dalnoki O, Jacomet S (2002) Some aspects of Late Iron Age agriculture based on the first results of an archaeobotanical investigation at Corvin tér Budapest Hungary. VegetHist Archaeobot 11(1–2):9–15. https://doi.org/10.1007/s003340200001

    Article  Google Scholar 

  • De Moulins D (1993) Les restes des plantes carbonisees du Cafer Höyük. Cahiers De L’euphrate 7:191–234

    Google Scholar 

  • Dedkova OS, Badaeva ED, Mitrofanova OP, Zelenin A, Pukhalskiy VA (2004) Analysis of intraspecific divergence of hexaploid wheat Triticum spelta L by C-banding of chromosomes. Russ J Genet 40:1111–1126. https://doi.org/10.1023/B:RUGE.0000044755.18085.7e

    CAS  Article  Google Scholar 

  • Dvorak J, Luo MC (2001) Evolution of free threshing and hulled forms of Triticum aestivum: old problems and new tools. In: Caligari PDS Brandham PE (Eds) Wheat taxonomy: the legacy of John Percival Proc Percival Symposium Reading, Linnean Special Issue 3. Academic Press, pp127–136

  • Ergün M, Margareta T, Willcox G, Carolyne D (2018) Plants of Aşıklı Höyük and changes through time: first archaeobotanical results from the 2010–14 excavation seasons. In: Özbaşaran M, Duru G Stiner MC (Eds) The Early Settlement at Aşıklı Höyük: Essays in Honor of Ufuk Esin. Ege Yayınları, Istanbul, pp 191–218

  • Flannery VK (1969) Origins and ecological effects of early domestication in Iran and the Near East. In: Peter J, Ucko GW Dimbleby (Eds) The domestication and exploitation of plants and animals, pp 73–100

  • Fernández E, Thaw S, Brown TA, Arroyo-Pardo E, Buxó R, Serret MD, Araus JL (2013) DNA analysis in charred grains of naked wheat from several archaeological sites in Spain. J Archaeol Sci 40(1):659–670. https://doi.org/10.1016/j.jas.2012.07.014

    CAS  Article  Google Scholar 

  • Fuller DQ, Willcox G, Allaby RG (2011) Cultivation and domestication had multiple origins: arguments against the core area hypothesis for the origins of agriculture in the Near East World. Archaeology 43:628–652. https://doi.org/10.1080/00438243.2011.624747

    Article  Google Scholar 

  • Gugerli F, Parducci L, Petit RJ (2005) Ancient plant DNA: review and prospects. New Phytol 166(2):409–418. https://doi.org/10.1111/j.1469-8137.2005.01360.x

    CAS  Article  PubMed  Google Scholar 

  • Haldorsen S, Akan H, Celik B, Heun M (2011) The climate of the Younger Dryas as a boundary for einkorn domestication. Veget Hist Archaeobot 20:305–318. https://doi.org/10.1007/s00334-011-0291-5

    Article  Google Scholar 

  • Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153:1074–1080. https://doi.org/10.1126/science.153.3740.1074

    CAS  Article  PubMed  Google Scholar 

  • Harlan JR (1992) Crops and man, 2nd edn. American Society of Agronomy Crop Science Society of America, Madison

    Book  Google Scholar 

  • Heun M, Haldorsen S, Vollan K (2008) Reassessing domestication events in the Near East: einkorn and Triticum urartu. Genome 51(6):444–451. https://doi.org/10.1139/G08-030

    CAS  Article  PubMed  Google Scholar 

  • Heun M, Schaefer-Pregl R, Klawan D, Castagna R, Accerbi M, Borgh B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314. https://doi.org/10.1126/science.278.5341.1312

    CAS  Article  Google Scholar 

  • Hillman GC (1972) The plant remains in excavations at can Hassan III 1969–1970 DH French. In: Higgs ES (ed) Papers in economic prehistory. Cambridge University Press, Cambridge, pp 180–190

    Google Scholar 

  • Hillman G, Mason S, de Moulins D, Nesbitt M (1996) Identification of archaeological remains of wheat: the 1992 London workshop. Circaea 12(2):195–210

    Google Scholar 

  • Honne B, Heun M (2009) On the domestication genetics of self-fertilizing plants. Veget Hist Archaeobot 18:269–272. https://doi.org/10.1007/s00334-009-0213-y

    Article  Google Scholar 

  • Hyun DY, Sebastin R, Lee KJ et al (2020) Genotyping-by-sequencing derived single nucleotide polymorphisms provide the first well-resolved phylogeny for the genus Triticum (Poaceae). Front Plant Sci 11:688. https://doi.org/10.3389/fpls.2020.00688

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacomet S (2006) Identification of cereal remains from archaeological sites. Basel University, Basel

    Google Scholar 

  • Jones G, Wardle K, Halstead P, Wardle D (1986) Crop storage at assiros. Sci Am 254(3):96–103

    Article  Google Scholar 

  • Jones G, Valamoti S, Charles M (2000) Early crop diversity: a “new” glume wheat from northern Greece. Veget Hist Archaeobot 9:133–146. https://doi.org/10.1007/BF01299798

    Article  Google Scholar 

  • Jovanović Ž, Stanisavljević N, Nikolić A, Medović A, Mikić A, Radović S, Đorđevićet V (2011) Pisum & Ervilia Tetovac—Made in Early Iron Age Leskovac Part Two Extraction of the ancient DNA from charred seeds from the site of Hissar in South Serbia Ratar povrt/Field. Veg Crop Res 48:227–232

    Google Scholar 

  • Karagöz A, Planalı N, Polat T (2006) Agro-morphological characterization of some wild wheat (Aegilops L and Triticum L) species. Turk J Agric for 30:387–398

    Google Scholar 

  • Kenéz Á, Pető Á, Gyulai F (2014) Evidence of ‘new glume wheat’ from the Late Neolithic (Copper Age) of south-eastern Hungary (4th millennium calBC). Veget Hist Archaeobot 23:551–566. https://doi.org/10.1007/s00334-013-0405-3

    Article  Google Scholar 

  • Kızıltan Z (2010) Excavations at Yenikapı Sirkeci and Üsküdar within Marmaray and Metro Projects. In: Kocabaş U (Eds) Istanbul Archaeological Museums proceedings of the 1st symposium on Marmaray-Metro Salvage Excavations, 5th–6 th May 2008, Istanbul Arkeoloji Müzeleri Müdürlüğü, Istanbul, pp 1–16

  • Kızıltan Z, Polat MA (2013) The Neolithic at Yenikapı Marmaray-Metro Project Rescue Excavations. In: Özdoğan M, Başgelen N, Kuniholm P (Eds) The Neolithic in Turkey New Excavations & New Research Volume 5 Northwest Turkey, Istanbul, pp 113–165

  • Kilian B, Ozkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: implications for the origin of agriculture. Mol Biol Evol 24:2657–2668. https://doi.org/10.1093/molbev/msm192

    CAS  Article  PubMed  Google Scholar 

  • Kistler L (2012) Ancient DNA extraction from plants. Methods Mol Biol 840:71–79. https://doi.org/10.1007/978-1-61779-516-9_10

    CAS  Article  PubMed  Google Scholar 

  • Kohler-Schneider M, Caneppele A (2009) Late Neolithic agriculture in eastern Austria: archaeobotanical results from sites of the Baden and Jevišovice cultures (3600–2800 BC). Veget Hist Archaeobot 18(1):61–74. https://doi.org/10.1007/s00334-007-0129-3

    Article  Google Scholar 

  • Kroll H (1983) Kastanas: Ausgrabungen in einem Siedlungshuiel der Bronze- und Eisenzeit Makedoniens 1975–1979 1 Die Pflanzenfunde, Berlin

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ladizinsky G (1985) Founder effect in crop-plant evolution. Econ Bot 39:191–199. https://doi.org/10.1007/BF02907844

    Article  Google Scholar 

  • Li C, Lister DL, Li H, Xu Y, Cui Y, Bower MA et al. (2011) Ancient DNA analysis of desiccated wheat grains excavated from a Bronze Age cemetery in Xinjiang. J Archaeol Sci 38(1):115–119. https://doi.org/10.1016/j.jas.2010.08.016

    CAS  Article  Google Scholar 

  • Marinova E (2003) Paleoethnobotanical study of Early Bronze Age II in the Upper Styama Valley (Dubene-Sarovka) IIB. In: Nikolova L (eds) Early Communication Systems in Southeastern Europe BAR International Series nr1139, vol 2, pp 499–504

  • Marinova E, Valamoti SM (2014) Crop diversity and choices in the prehistory of Southeastern Europe: the archaeobotanical evidence from Greece and Bulgaria. In: Chevalier A, Marinova E, Pena-Cocharro L (eds) Plants and people: choices and diversity through time EARTH, volume 1 Oxbow Books Oxford, pp 46–54

  • Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S, Hammer K Heller J (eds) Hulled Wheats promoting the conservation and use of underutilized and neglected crops 4 proceedings of the first international workshop on hulled wheats, 21–22 July 1995 Castelvecchio Pascoli Tuscany, Italy. International Plant Genetic Resources Institute, Rome, pp 41–100

  • Nesbitt M (2001) Wheat evolution: integrating archaeological and biological evidence. In: Caligari DS Brandham PE (eds) Wheat taxonomy: the legacy of John Percival PLinnean Society Linnean Special Issue 3, London, pp 37–59

  • Nesbitt M (2006) Identification guide for Near Eastern grass seeds, London

  • Oliveira HR, Civáň P, Morales J, Rodríguez-Rodríguez A, Lister DL, Jones MK (2012) Ancient DNA in archaeological wheat grains: preservation conditions and the study of pre-Hispanic agriculture on the island of Gran Canaria (Spain). J Archaeol Sci 39(4):828–835. https://doi.org/10.1016/j.jas.2011.10.008

    CAS  Article  Google Scholar 

  • Özdoğan M, Başgelen N, Kuniholm PI (2011) The Neolithic in Turkey 1: the Tigris Basin New Excavations and New Research, İstanbul

  • Özkan H, Brandolini A, Schafer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol Biol and Evol 19:1797–1801. https://doi.org/10.1093/oxfordjournals.molbev.a004002

    Article  Google Scholar 

  • Özkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet 110:1052–1060. https://doi.org/10.1007/s00122-005-1925-8

    Article  PubMed  Google Scholar 

  • Palmer SA, Clapham AJ, Rose P, Freitas FO, Owen BD, Beresford-Jones D et al (2012) Archaeogenomic evidence of punctuated genome evolution in gossypium. Mol Biol Evol 29:2031–2038. https://doi.org/10.1093/molbev/mss070

  • Popova T (1995) Plant remains from Bulgarian prehistory. In: Baıley DW Panayotov I (eds) Prehistory of Bulgaria Monographs in World. Archaeology Prehistory Press, Madison, Wisconsin pp 193–207

  • Perrino P, Laghetti GD’, Antuono LF, Al Ajlouni M, Kanbertay M, Szabó AT et al (1996) Ecogeographical distribution of hulled wheat species. In: Padulosi S, Hammer K, Heller J (Eds) Hulled wheats promoting the conservation and use of underutilized and neglected crops 4 proceedings of the first international workshop on hulled wheats 21–22 July 1995 Castelvecchio Pascoli Tuscany, Italy. International Plant Genetic Resources Institute, Rome, pp 102–120

  • Rindos D (1980) Symbiosis instability and the origins and spread of agriculture. Curr Anthropol 21:751–772

    Article  Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W (2002) Genetics and geography of wild ce-real domestication in the Near East. Nat Rev Genet 3:429–441. https://doi.org/10.1038/nrg817

    CAS  Article  PubMed  Google Scholar 

  • Schlumbaum A, Neuhaus JM, Jacomet S (1998) Coexistence of tetraploid and hexaploid naked wheat in a Neolithic Lake dwelling of Central Europe: evidence from morphology and ancient DNA. J ArchaeolSci 25(11):1111–1118. https://doi.org/10.1006/jasc.1998.0338

    Article  Google Scholar 

  • Schlumbaum A, Tensen M, Jaenicke-Després V (2008) Ancient plant DNA in archaeobotany. Veget Hist Archaeobot 17(2):233–244. https://doi.org/10.1007/s00334-007-0125-7

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. EcolLett 9(5):615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x

    Article  Google Scholar 

  • Smith BD (2001) Low-level food production. J Archaeol Res 9:1–43. https://doi.org/10.1023/A:1009436110049

    Article  Google Scholar 

  • Toulemonde F, Durand F, Berrio L, Bonnaire E, Daoulas G, Wiethold J (2014) Records of ‘“new”’ glume wheat in France: a review. Veget Hist Archaeobot 24:197–206. https://doi.org/10.1007/s00334-014-0479-6

    Article  Google Scholar 

  • Ulaş B, Fiorentino G (2010) Yumuktepe Höyüğü yerleşmesi arkeobotanik analizlerinin ön sonuçları. Arkeoloji Ve Sanat 135:1–10

    Google Scholar 

  • Ulaş B (2015) Reconstruction of the origin and spread of agriculture in the Neolithic of the Near East through the study of cereals: the contribution of morphological biometric analysis and ethnobotanical studies. Unpublished PhD thesis "La Sapienza" University of Rome, Rome

  • Ulaş B (2020) Reappraisal of the Neolithisation of the Marmara region through archaeobotanical analysis at Pendik Höyük and Yenikapı. In: Başgelen N (ed) Journal of Archaeology and Art/Arkeoloji ve Sanat 164 Kanaat Basımevi, Istanbul, pp 27–40

  • Ulaş B, Fiorentino G (2020) Recent attestations of “new” glume wheat in Turkey: a reassessment of its role in the reconstruction of Neolithic agriculture. Veget Hist Archaeobot 30:685–701. https://doi.org/10.1007/s00334-020-00807-w

    Article  Google Scholar 

  • Ulaş B (2021) Traditional wheat cultivation in South-Eastern Anatolia and its comparison to the archaeological context. Genet Resour Crop Evol 68:151–184. https://doi.org/10.1007/s10722-020-00977-6

    Article  Google Scholar 

  • Valamoti SM, Papanthimou A, Pilali A (2008) Cooking ingredients from Bronze Age Archondiko: the archaeobotanical evidence. In: Facorelli Y, Zacharias N, Polikreti K (eds) Proceedings of the 4th international symposium of the Hellenic Society for Archaeometry National Hellenic Research Foundation, pp 187–194

  • van Zeist W (1972) Paleobotanical results of the 1970 Season at Çayönü Turkey. Helinium 12(1):3–19

    Google Scholar 

  • van Zeist W (1976) On macroscopic traces of food plants in southwestern Asia (with some reference to pollen data). Philos Trans R Soc Lond B 275:27–41

    Article  Google Scholar 

  • Weide A, Hodgson JG, Leschner H et al (2021) The association of arable weeds with modern wild cereal habitats: implications for reconstructing the origins of plant cultivation in the levant. Environ Archaeol. https://doi.org/10.1080/1461410320211882715

    Article  Google Scholar 

  • Willcox G (2004) Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates valley. J of Archaeol Sci 31:145–150. https://doi.org/10.1016/j.jas.2003.07.003

    Article  Google Scholar 

  • Willcox G, Fornite S, Herveux L (2008) Early Holocene cultivation before domestication in northern Syria. Veget Hist Archaeobot 17:313–325. https://doi.org/10.1007/s00334-007-0121-y

    Article  Google Scholar 

  • Zohary D (1996) The mode of domestication of the founder crops in Southwest Asian agriculture The origins and spread of agriculture and pastoralism in Eurasia. In: Harris DR (eds) London University, College London Press, pp 142–158

  • Zohary D, Hopf M (2000) Domestication of plants in the old world, 3rd edn. New York, Oxford

Download references

Acknowledgements

We are grateful to Prof. Robert J. Joly for his valuable comments and English editing on the manuscript that helped us to improve the manuscript greatly.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, material preparation, data collection, and analysis. The first draft of the manuscript was written by Funda Ö. Değirmenci, Burhan Ulaş, Çiğdem Kansu, Asiye Uluğ and Zeki Kaya and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zeki Kaya.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 725 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Değirmenci, F.Ö., Ulaş, B., Kansu, Ç. et al. The ancient DNA and archaeobotanical analysis suggest cultivation of Triticum aestivum subsp. spelta at Yumuktepe and Yenikapı Pottery Neolithic sites in Turkey. Genet Resour Crop Evol (2022). https://doi.org/10.1007/s10722-022-01453-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10722-022-01453-z

Keywords

  • Yumuktepe
  • Yenikapi
  • aDNA
  • T. aestivum subsp. spelta
  • Aegilops tauschii
  • IGS region