Skip to main content

Phenotypic evolution of the wild progenitor of cultivated barley (Hordeum vulgare L. subsp. spontaneum (K. Koch) Thell.) across bioclimatic regions in Jordan

Abstract

Climate change affects the evolutionary potential and the survival of wild plant populations by acting on fitness traits. Resurrection approach was applied to investigate the phenotypic changes during the evolution of the wild progenitor of cultivated barley, Hordeum vulgare L. subsp. spontaneum (K. Koch.) Thell. in Jordan. We compared 40 Hordeum spontaneum populations collected in Jordan in 1991 with 40 Hordeum spontaneum populations collected from the same sites in 2014. In the comparison we included seven Hordeum vulgare checks (one local landrace and six improved varieties). The correlation analysis between the phenotypic and eco-geographical data based on Principal Component Analysis and Mantel test showed that the populations were aggregated according to their ecological geographical pattern in two groups with a significant (p < 0.0001) correlation between groups. Four heritable traits, namely plant height, biological yield, number of tillers, and awn length, determined the phenotypic structure of the populations. The two populations collected at 23 years distance, diverged in two distinctive phenotypic structure categories; a conserved structure and an evolved structure with a reduction in the phenotypic trait diversity in the population collected in 2014. These results reveal the value of combining phenotypic and environmental data to understand the evolution and adaptation of the population to climate change over a long period and the consequences on the wild progenitor of cultivated barley collection to avoid loss of genetic materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595

    PubMed  Google Scholar 

  • Al-Eisawi DM (1985) Vegetation in Jordan. In: Hadidi A (ed) Studies in the history and archaeology of Jordan. Dept of Antiquities, Hashemite Kingdom of Jordan, and Amman, Routledge and Kegan Paul, London, UK, pp 45–57

  • Al-Eisawi DM (1996) Vegetation of Jordan. UNESCO Cairo Office, Egypt

  • Allard RW (1999) Principles of plant breeding, 2nd edn. Wiley, New York

    Google Scholar 

  • Al-Hajaj N, Peterson GW, Horbach C, Al-Shamaa K, Tinker NA, Fu YB (2018) Genotyping-by-sequencing empowered genetic diversity analysis of Jordanian oat wild relative Avena sterilis. Genet Resour Crop Evol 65(8):2069–2082

    Google Scholar 

  • Andrew RL, Wallis IR, Harwood CE, Foley WJ (2010) Genetic and environmental contributions to variation and population divergence in a broad spectrum foliar defense of Eucalyptus tricarpa. Ann Bot 105(5):707–717

    PubMed  PubMed Central  Google Scholar 

  • Backes G, Madsen LH, Jaiser H, Stougaard J, Herz M, MohlerV, Jahoor A (2003) Localization of genes for resistance against Blumeria graminis f. sp. hordei and Puccinia graminis in a cross between a barley cultivar and wild barley (Hordeum vulgare subsp. spontaneum) line. Theor Appl Genet 106:353–362. PMID: 1258–2863

  • Badr A, Müller K, Schäfer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17(4):499–510. https://doi.org/10.1093/oxfordjournals.molbev.a026330

    CAS  Article  PubMed  Google Scholar 

  • Baek HJ, BeharavA NE (2003) Ecological–genomic diversity of microsatellites in wild barley Hordeum spontaneum populations in Jordan. Theor Appl Genet 106:397–410

    CAS  PubMed  Google Scholar 

  • Baloch AW, Baloch MJ, Ali M, Baloch M, Jogi Q, Baloch AM, Weining S (2016) Genetic diversity and structure analysis in wild and landraces of barley from Jordan by using ISJ markers. Pak J Bot 48(2):637–644

    CAS  Google Scholar 

  • Barrett SC, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger KE (eds) Genetics and Conservation of Rare Plants. Oxford University Press, Oxford, pp 3–30

    Google Scholar 

  • Batchu AK, Zimmermann D, Schulze-Lefert P, Koprek T (2006) Correlation between hordatine accumulation, environmental factors and genetic diversity in wild barley (Hordeum spontaneum K. Koch) accessions from the Near East Fertile Crescent. Genetica 127:87–99. https://doi.org/10.1007/s10709-005-2484-2

    CAS  Article  PubMed  Google Scholar 

  • Baum BR, Nevo E, Johnson DA, Beiles A (1997) Genetic diversity in wild barley (Hordeum spontaneum K. Koch) in the Near East: a molecular analysis using Random Amplified Polymorphic DNA (RAPD) markers. Genet Resour Crop Evolut 44(2):147–157

    Google Scholar 

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross “Arta” × H. spontaneum 41–1. Theor Appl Genet 107:1215–1225

    CAS  PubMed  Google Scholar 

  • Bedada G, Westerbergh A, Nevo E, Korol A, Schmid KJ (2014) DNA sequence variation of wild barley Hordeum spontaneum (L.) across environmental gradients in Israel. Heredity 112:646–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. J Torrey Botanical Soc 135(1):126–146. https://doi.org/10.3159/07-RP-035R.1

    Article  Google Scholar 

  • Bock A, Sparks TH, Estrella N, Jee N, Casebow A, Menzel A (2014) Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey. Glob Change Biol 20(11):3508–3519. https://doi.org/10.1111/gcb.12579

    Article  Google Scholar 

  • Börner A, Schöafer M, Schmidt A, Grau M, Vorwald J (2005) Associations between geographical origin and morphological characters in bread wheat (Triticum aestivum L.). Plant Genet Resour 3(3):360–372

    Google Scholar 

  • Brunet J, Larson-Rabin Z (2012) The response of flowering time to global warming in a high-altitude plant: the impact of genetics and the environment. Botany 90(4):319–326. https://doi.org/10.1139/b2012-001

    Article  Google Scholar 

  • Ceccarelli S (1994) Specific adaptation and breeding for marginal conditions. Euphytica 77:205–219

    Google Scholar 

  • Ceccarelli S, Grando S, Van Leur JAG (1987) Genetic diversity in barley landraces from Syria and Jordan. Euphytica 36:389–405

    Google Scholar 

  • Ceccarelli S (2014) Drought. In: Jackson M, Ford-Lloyd BV, and Parry ML, (eds). Plant Genetic Resources and Climate Change. CABI International, pp 221–235

  • Ceccarelli S, Grando S (2020) Evolutionary plant breeding as a response to the complexity of climate change. Iscience 23(12):101815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Che YH, Yang YP, Yang XM, Li XQ, Li LH (2011) Genetic diversity between ex situ and in situ samples of Agropyron cristatum (L.) Gaertn based on simple sequence repeat molecular markers. Crop Pasture Sci 62(8):639–644. https://doi.org/10.1071/CP11065

    Article  Google Scholar 

  • Chen G, Li C, Shi Y, Nevo E (2008) Wild barley Hordeum spontaneum a genetic resource for crop improvement in cold and arid regions. Sci Cold Arid Reg 1:0115–0124

    Google Scholar 

  • Chen G, Suprunova T, Krugman T, Fahima T, Nevo E (2004) Ecogeographic and genetic determinants of kernel weight and colour of wild barley (Hordeum spontaneum) populations in Israel. Seed Sci Res 14(2):137–146. https://doi.org/10.1079/SSR2004163

    CAS  Article  Google Scholar 

  • Coombes NE (2009) DiGGeR design search tool in R. http://nswdpibiom.org/austatgen/software

  • Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60(9):2529–2539. https://doi.org/10.1093/jxb/erp196

    CAS  Article  PubMed  Google Scholar 

  • Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381–393

    Google Scholar 

  • Dahamsheh A, Aksoy H (2007) Structural characteristics of annual precipitation data in Jordan. Theoret Appl Climatol 88:201–212

    Google Scholar 

  • Dotlacil L, Hermuth J, Stehno Z, Manev M (2000) Diversity in European winter wheat landraces and obsolete cultivars. Czech J Genet Plant Breed 36:29–36

    Google Scholar 

  • Elberse AM, Van Damme JMM, Van Tienderen PH (2003) Plasticity of growth characteristics in wild barley (Hordeum spontaneum) in response to nutrient limitation. J Ecol 91(3):371–382. https://doi.org/10.1046/j.1365-2745.2003.00776.x

    Article  Google Scholar 

  • Ellegren H, Sheldon BC (2008) Genetic basis of fitness differences in natural populations. Nature 452(7184):169–175

    CAS  PubMed  Google Scholar 

  • Endresen DTF (2010) Predictive association between trait data and ecogeographic data for Nordic barley landraces. Crop Sci 50(6):2418–2430

    Google Scholar 

  • Etterson JR (2004) Evolutionary potential of Chamaecrista fasciculata in relation to climate change. I. Clinal patterns of selection along an environmental gradient in the Great Plains. Evolution 58(7):1446–1458. https://doi.org/10.1111/j.0014-3820.2004.tb01726.x

    Article  PubMed  Google Scholar 

  • FAO (2013) Report of the fourteenth regular session of the commission on genetic resources for food and agriculture. CGRFA 14/13/report. http://www.fao.org/nr/cgrfa/cgrfameetings/cgrfa-comm/fourteenth-reg/en/

  • Fowler N (1986) The role of competition in plant communities in arid and semiarid regions. Annu Rev Ecol Syst 17:89–110

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Franks SJ, Hamann E, Weis AE (2017) Using the resurrection approach to understand contemporary evolution in changing environments. Evol Appl 11:17–28

    PubMed  PubMed Central  Google Scholar 

  • Freiwan M, Kadioglu M (2008) Spatial and temporal analysis of climatological data in Jordan. Int J Climatol 28(4):521–535. https://doi.org/10.1002/joc.1562

    Article  Google Scholar 

  • Fu YB, Peterson GW, Horbach C, Konkin DJ, Beiles A, Nevo E (2019) Elevated mutation and selection in wild emmer wheat in response to 28 years of global warming. Proc Natl Acad Sci 116(40):20002–20008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453–467

    Google Scholar 

  • Gao L, Chen W, Jiang W, Ge S, Hong D, Wang X (2000) Genetic erosion in northern marginal population of the common wild rice Oryza rufipogon Griff. and its conservation, revealed by the change of population genetic structure. Hereditas 133(1):47–53. https://doi.org/10.1111/j.1601-5223.2000.00047.x

    CAS  Article  PubMed  Google Scholar 

  • Genger RK, Williams KJ, Raman H, Read BJ, Wallwork H, Burdon JJ, Brown AHD (2003) Leaf scald resistance genes in Hordeum vulgare and Hordeum vulgare ssp. spontaneum: parallels between cultivated and wild barley. Aust J Agric Res 54(12):1335–1342

    CAS  Google Scholar 

  • Goodwillie C, Kalisz S, Eckert C (2005) The evolutionary enigma of mixed mating systems.in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 36:47–79. https://doi.org/10.1146/annurev.ecolsys.36.091704.175539

    Article  Google Scholar 

  • Gram WK, Sork VL (2001) Association between environmental and genetic heterogeneity in forest tree populations. Ecology 82(7):2012–2021. https://doi.org/10.1890/0012-9658(2001)082[2012:ABEAGH]2.0.CO;2

    Article  Google Scholar 

  • Grando S, Ceccarelli S (1995) Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) barley. Euphytica 86:73–80

    Google Scholar 

  • Grando S, Baum M, Ceccarelli S, Goodchild A, Jaby El-Haramein F, Jahoor A, Backes G (2005) QTLs for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare × H. spontaneum cross in a Mediterranean environment. Theor Appl Genet 110:688–695

    CAS  PubMed  Google Scholar 

  • Greene SL, Kisha TJ, Yu L-X, Parra-Quijano M (2014) Conserving plants in gene banks and nature: investigating complementarity with Trifolium thompsoniiMorton. PLoS ONE 9(8):e105145. https://doi.org/10.1371/journal.pone.0105145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Sharma PK, Balyan HS, Roy JK, Sharma S, Beharav A, Nevo E (2002) Polymorphism at rDNA loci in barley and its relation with climatic variables. Theor Appl Genet 104:473–481 (PMID: 12582721)

    CAS  PubMed  Google Scholar 

  • Haas M, Schreiber M, Mascher M (2019) Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J Integr Plant Biol 61(3):204–225

    PubMed  Google Scholar 

  • Hamasha HR, Hensen I (2009) Seed germination of four Jordanian Stipa spp: differences in temperature regimes and seed provenances. Plant Species Biol 24(2):127–132. https://doi.org/10.1111/j.1442-1984.2009.00247.x

    Article  Google Scholar 

  • Hamasha HR, Schmidt-Lebuhn AN, Durka W, Schleuning M, Hensen I (2013) Bioclimatic regions influence genetic structure of four Jordanian Stipa species. Plant Biol 15(5):882–891. https://doi.org/10.1111/j.1438-8677.2012.00689.x

    CAS  Article  PubMed  Google Scholar 

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153(3740):1074–1080

    CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high-resolution interpolated climate surfacesfor global land areas. A J Royal Meteorol Soc 25(15):1965–1978

    Google Scholar 

  • Hübner S, Hüffken M, Oren E, Haseneyer G, Stein N, Graner A, Schmid K, Fridman E (2009) Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol Ecol 18(7):1523–1536. https://doi.org/10.1111/j.1365-294X.2009.04106.x

    Article  PubMed  Google Scholar 

  • Hübner S, Bdolach E, Ein-Gedy S, Schmid KJ, Korol A, Fridman E (2013) Phenotypic landscapes: phenological patterns in wild and cultivated barley. J Evolut Biol 26(1):163–174. https://doi.org/10.1111/jeb.12043

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), (2001), Climate Change 2001, Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the IPCC Third Assessment Report (TAR). Cambridge University Press, Cambridge, UK

  • Ivandic V, Hackett CA, Nevo E, Keith R, Thomas WTB, Forster BP (2002) Analysis of sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol Biol 48:511–527

    CAS  PubMed  Google Scholar 

  • Jakob SS, Roedder D, Engler JO, Shaaf S, Oezkan H, Blattner FR, Kilian B (2014) Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol Evolut 6(3):685–702

    CAS  Google Scholar 

  • Jarvis A, Lane A, Hijmans RJ (2008) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126(1–2):13–23. https://doi.org/10.1016/j.agee.2008.01.013

    Article  Google Scholar 

  • Johansson J, Bolmgren K, Jonzén N (2013) Climate change and the optimal flowering time of annual plants in seasonal environments. Glob Change Biol 19(1):197–207. https://doi.org/10.1111/gcb.12006

    Article  Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8(9):1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x

    Article  PubMed  Google Scholar 

  • Kantar MB, Sosa CC, Khoury CK, Castañeda-Álvarez NP, Achicanoy HA, Rieseberg LH (2015) Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Front Plant Sci 6:841. https://doi.org/10.3389/fpls.2015.00841

    Article  PubMed  PubMed Central  Google Scholar 

  • Kind OD, Masel J (2007) The evolution of bet-hedging adaptations to rare scenarios. Theor Popul Biol 72(4):560–575. https://doi.org/10.1016/j.tpb.2007.08.006

    Article  Google Scholar 

  • Kjack JL, Witters RE (1974) Physiological activity of awns in Isolines of Atlas Barley1. Crop Sci 14(2):243–248. https://doi.org/10.2135/cropsci1974.0011183X001400020003xb

    CAS  Article  Google Scholar 

  • Lakew B, Eglinton J, Henry RJ, Baum M, Grando S, Ceccarelli S (2011) The potential contribution of wild barley (Hordeum vulgare spp. spontaneum) germplasm to drought resistance of cultivated barley (Hordeum vulgare spp. vulgare). Field Crop Res 120:161–168

    Google Scholar 

  • Lakew B, Henry RJ, Eglinton J, Baum M, Ceccarelli S, Grando S (2013) SSR analysis of introgression of drought tolerance from the genome of Hordeum spontaneum into cultivated barley (Hordeum vulgare ssp vulgare). Euphytica 191(2):231–243. https://doi.org/10.1007/s10681-012-0795-9

    CAS  Article  Google Scholar 

  • Lala S, Amri A, Maxted N (2018) Towards the conservation of crop wild relative diversity in North Africa: Checklist, prioritization and inventory. Genet Resour Crop Evol 65(1):113–124

    Google Scholar 

  • Levin DA (1988) Local differentiation and the breeding structure of plant populations. In: Gottlieb LD, Jain SK (eds) Plant evolutionary biology. Chapman and Hall, New York, pp 305–329

    Google Scholar 

  • Linhart YV (1988) Intrapopulation differentiation in annual plants. III. The contrasting effects of intra- and interspecific competition. Evolution 42:1047–1064

    PubMed  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277. https://doi.org/10.1146/annurev.ecolsys.27.1.237

    Article  Google Scholar 

  • Liviero L, Maestri E, Gulli M, Nevo E, Marmiroli N (2002) Ecogeographic adaptation and genetic variation in wild barley, application of molecular markers targeted to environmentally regulated genes. Genet Resour Crop Evol 49:133–144. https://doi.org/10.1023/A:1014792509087

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616–620

    CAS  PubMed  Google Scholar 

  • Mascher M, Schuenemann VJ, Davidovich U, Marom N, Himmelbach A, Hübner S, Korol A, David M, Reiter E, Riehl S, Schreiber M (2016) Genomic analysis of 6000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet 48:1089–1093. https://doi.org/10.1038/ng.3611

    CAS  Article  PubMed  Google Scholar 

  • Maxted N, Dulloo ME, Ford-Lloyd BV, Iriondo MJ, Jarvis A (2008) Gap analysis: a tool for complementary genetic conservation assessment. Divers Distribut 14(6):1018–1030. https://doi.org/10.1111/j.1472-4642.2008.00512.x

    Article  Google Scholar 

  • Maxted N, Kell SP (2009) Establishment of a global network for the in situ conservation of crop wild relatives: status and needs. FAO Commission on Genetic Resources for Food and Agriculture, Rome, Italy

  • Michalski SG, Durka W, Jentsch A, Kreyling J, Pompe S, Schweiger O, Willner E, Beierkuhnlein C (2010) Evidence for genetic differentiation and divergent selection in an autotetraploid forage grass (Arrhenatherum elatius). Theor Appl Genet 120:1151–1162. https://doi.org/10.1007/s00122-009-1242-8

    Article  PubMed  Google Scholar 

  • Mitchell-Olds T, Willis JH, Goldstein DB (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8(11):845–856

    CAS  PubMed  Google Scholar 

  • Morrell PL, Lundy KE, Clegg MT (2003) Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp spontaneum) despite migration. Proc Natl Acad Sci USA 100(19):10812–10817. https://doi.org/10.1073/pnas.1633708100

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Nevo E, Beiles A, Zohary D (1986) Genetic resources of wild barley in the Near East: structure, evolution and application in breeding. Biol J Lin Soc 27(4):355–380. https://doi.org/10.1111/j.1095-8312.1986.tb01742.x

    Article  Google Scholar 

  • Nevo E (1992) Origin, evolution, population genetics and resources for breeding of wild barley Hordeum spontaneum in the Fertile Crescent. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, UK, pp 19–43

    Google Scholar 

  • Nevo E (2001) Evolution of genome–phenome diversity under environmental stress. Proc Natl Acad Sci USA 98(11):6233–6240. https://doi.org/10.1073/pnas.101109298

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Nevo E, Fu YB, Pavlicek T, Khalifa S, Tavasi M, Beiles A (2012) Evolution of wild cereals during 28 years of global warming in Israel. Proc Natl Acad Sci USA 109(9):3412–3415. https://doi.org/10.1073/pnas.1121411109

    Article  PubMed  PubMed Central  Google Scholar 

  • Nice LM, Steffenson BJ, Blake TK, Horsley RD, Smith KP, Muehlbauer GJ (2017) Mapping agronomic traits in wild barley advanced backcross–nested association mapping population. Crop Sci 57(3):1199–1210. https://doi.org/10.2135/cropsci2016.10.0850

    Article  Google Scholar 

  • Olofsson H, Ripa J, Jonzen N (2009) Bet-hedging as an evolutionary game: the trade-off between egg size and number. Proc Royal Soc Biol Sci 276(1669):2963–2969. https://doi.org/10.1098/rspb.2009.0500

    Article  Google Scholar 

  • Osborne T, Rose G, Wheeler T (2013) Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agric Meteorol 170:183–194

    Google Scholar 

  • Pakniyat H, Powell W, Baird E, Handley LL, Robinson D, Scrimgeour CM, Hackett CA, Forster BP, Nevo E, Caligari PD (1997) AFLP variation in wild barley (Hordeum spontaneum K. Koch) with reference to salt tolerance and associated ecogeography. Genome 40(3):332–341. https://doi.org/10.1139/g97-046

    CAS  Article  PubMed  Google Scholar 

  • Parra-Quijano M, Iriondo JM, & Torres E (2012) Review.Applications of ecogeography and geographic information systems in conservation and utilization of plant genetic resources. Spanish journal of agricultural research, 10(2), 419–429.

  • Parra-Quijano M, Iriondo JM, Torres E (2012b) Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genet Resour Crop Evol 59(2):205–217. https://doi.org/10.1007/s10722-011-9676-7

    Article  Google Scholar 

  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SR, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269(5231):1714–1718. https://doi.org/10.1126/science.269.5231.1714

    CAS  Article  PubMed  Google Scholar 

  • Peleg Z, Saranga Y, Krugman T, Abbo S, Nevo E, Fahima T (2008) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ 31(1):39–49. https://doi.org/10.1111/j.1365-3040.2007.01731.x

    Article  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Pimentel D, Wilson C, McCullum C, Huang R, Dwen P, Flack J, TranB ST, Cliff B (1997) Economic and environmental benefits of biodiversity. Bioscience 47:747–757

    Google Scholar 

  • Qian C, Yan X, Shi Y, Yin H, Chang Y, Chen J, Ingvarsson PK, Nevo E, Ma XF (2020) Adaptive signals of flowering time pathways in wild barley from Israel over 28 generations. Heredity 124(1):62–76. https://doi.org/10.1038/s41437-019-0264-5

    CAS  Article  PubMed  Google Scholar 

  • Repkova J, Dreiseitl A, Lizal P, Kyjovska Z, Teturova K, Psotkova R, Jahoor A (2006) Identification of resistance genes against powdery mildew in four accessions of Hordeum vulgare ssp. spontaneum. Euphytica 151:23–30. https://doi.org/10.1007/s10681-006-9109-4

    CAS  Article  Google Scholar 

  • RICCAR (2017) United Nations Economic and Social Commission for Western Asia (ESCWA) et al. 2017. Arab Climate Change Assessment Report – Executive Summary. Beirut, E/ESCWA/SDPD/2017/RICCAR/Summary

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. https://doi.org/10.1038/nature01333

    CAS  Article  PubMed  Google Scholar 

  • Russell J, Mascher M, Dawson IK, Kyriakidis S, Freund CC, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48:1024–1030. https://doi.org/10.1038/ng.3612

    CAS  Article  PubMed  Google Scholar 

  • Saba M, Abu Hammour W, Aljaafreh S (2014) Climate change and drought atlas for Jordan. International Center for Agricultural Research in the Dry Area

  • Shakhatreh Y, Haddad N, Alrababah M, Grando S, Ceccarelli S (2010) Phenotypic diversity in wild barley (Hordeum vulgare L. ssp. spontaneum (K. Koch) Thell.) accessions collected in Jordan. Genet Resour Crop Evol 57:131–146. https://doi.org/10.1007/s10722-009-9457-8

    Article  Google Scholar 

  • Shakhatreh Y, Baum M, Haddad N, Alrababah M, Ceccarelli S (2016) Assessment of genetic diversity among Jordanian wild barley (Hordeum spontaneum) genotypes revealed by SSR markers. Genet Resour Crop Evol 63(5):813–822

    CAS  Google Scholar 

  • Shaw RG, Shaw FH (2014) Quantitative genetic study of the adaptive process. Heredity 112:13–20. https://doi.org/10.1038/hdy.2013.42

    CAS  Article  PubMed  Google Scholar 

  • Shi M, Michalski SG, Chen XY, Durka W (2011) Isolation by elevation: genetic structure at neutral and putatively non-neutral loci in a dominant tree of subtropical forest Castanopsis eyre. PLoS ONE 6(6):e21302. https://doi.org/10.1371/journal.pone.0021302

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Thormann I, Fiorino E, Halewood M, Engels J (2015) Plant genetic resources collections and associated information as baseline resource for genetic diversity studies: an assessment of the IBPGR supported collections. Genet Resour Crop Evol 62(8):1279–1293. https://doi.org/10.1007/s10722-015-0231-9

    Article  Google Scholar 

  • Thormann I, Reeves P, Reilley A, Engels JM, Lohwasser U, Börner A, Richards CM (2016) Geography of genetic structure in barley wild relative Hordeum vulgare subsp. spontaneum in Jordan. PLoS ONE 11(8):160745. https://doi.org/10.1371/journal.pone.0160745

    CAS  Article  Google Scholar 

  • Thormann I, Reeves P, Thumm S, Reilley A, Engels JM, Biradar CM, Richards CM (2017) Genotypic and phenotypic changes in wild barley (Hordeum vulgare subsp. spontaneum) during a period of climate change in Jordan. Genet Resour Crop Evolut 64(6):1295–1312. https://doi.org/10.1007/s10722-016-0437-5

    Article  Google Scholar 

  • UN 2015 World population prospects: the 2015 revision, Key Findings and Advance Tables, United Nations Department of Economic and Social Affairs, Populations Division. Working Paper no. ESA/P/WP.241

  • Van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2010) Genetic erosion in crops: concept, research, results and challenges. Plant Genet Resour Characteriz Utiliz 8(1):1–15. https://doi.org/10.1017/S1479262109990062

    Article  Google Scholar 

  • Van Rijn CPE, Heersche I, van Berkel YEM, Nevo E, Lamers H, Poorter H (2000) Growth characteristics in Hordeum spontaneum populations from different habitats. New Phytol 146(3):471–481. https://doi.org/10.1046/j.1469-8137.2000.00670.x

    Article  Google Scholar 

  • Vincent H, von Bothmer R, Knüpffer H, Amri A, Konopka J, Maxted N (2013) Genetic gap analysis of wild Hordeum taxa. Plant Genetic Resour 10(3):242–253. https://doi.org/10.1017/S1479262112000317

    Article  Google Scholar 

  • Volis S, Mendlinger S, Orlovsky N (2000) Variability in phenotypic traits in core and peripheral populations of wild barley Hordeum spontaneum Koch. Hereditas 133(3):235–247. https://doi.org/10.1111/j.1601-5223.2000.00235.x

    CAS  Article  PubMed  Google Scholar 

  • Volis S, Mendlinger S, Turuspekov Y, Esnazarov U (2002) Phenotypic and allozyme variation in mediterranean and desert populations of wild barley Hordeum spontaneum Koch. Evolution 56(7):1403–1415. https://doi.org/10.1111/j.0014-3820.2002.tb01453.x

    CAS  Article  PubMed  Google Scholar 

  • vonKorff M, Wang H, Leon J, Pillen K (2006) AB-QTL analysis in spring barley II Detection of favorable exotic alleles for agronomic traits introgressed from wild barley (Hordeum vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231. https://doi.org/10.1007/s00122-006-0223-4

    CAS  Article  Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2005) AB-QTL analysis in spring barley I Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111(3):583–590. https://doi.org/10.1007/s00122-005-2049-x

    CAS  Article  Google Scholar 

  • VSN International (2019) A guide to GenStat® Release 20th. In: Hemel Hempstead UK, Wang T, Ottle C, Peng SS, Janssens IA, Lin X, Ciais P (eds) The influence of local spring temperature variance on temperature sensitivity of spring phenology. Global Change Biology 2095: 1473–1480. https://doi.org/10.1111/gcb.12509

  • Wang T, Ottle C, Peng SS, Janssens IA, Lin X, Ciais P (2014) The influence of local spring temperature variance on temperature sensitivity of spring phenology. Glob Change Biol 20(5):1473–1480. https://doi.org/10.1111/gcb.12509

    Article  PubMed  Google Scholar 

  • Zohary D (1973) Geobotanical Foundations of the Middle East, Vols 1 and 2.Gustav Fischer Verlag and Swets and Zeitlinger, Stuttgart, Germany, and Amsterdam, the Netherlands

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world, 4th edn. Oxford Univ Press, Oxford, p 264

    Google Scholar 

Download references

Acknowledgements

We thank the International Treaty on Plant Genetic Resources for Food and Agriculture, which supported the collections of Hordeum spontaneum (Grant No. Pr -176- Jordan). We also thank the National Agricultural Research Centre (NARC) team for their help in this research: Mr. Ziad Tahabsom from the biodiversity and medicinal plant department, Ms. Muna Saba from the Environment and Climate Change Directorate, the Maru team for technical help in the field experiments, and Dr. Imke Thormann for help in obtaining bioclimate variables data.

Author information

Authors and Affiliations

Authors

Contributions

N.A. and S.C. conceived the collaborative research. N.A. collected the germplasm in Jordan. MA and AA conducted the experiment. M.A., N.A.L. and J.N. recorded the data. N.A. and H.M. conducted the data analysis. N.A., S.G., S.C. and Y.S. wrote the paper. All authors contributed to and approved the paper revision.

Corresponding author

Correspondence to Nawal Al-Hajaj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Hajaj, N., Grando, S., Ababnah, M. et al. Phenotypic evolution of the wild progenitor of cultivated barley (Hordeum vulgare L. subsp. spontaneum (K. Koch) Thell.) across bioclimatic regions in Jordan. Genet Resour Crop Evol 69, 1485–1507 (2022). https://doi.org/10.1007/s10722-021-01314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01314-1

Keywords

  • Environmental adaptation
  • Hordeum spontaneum
  • Ecogeographical differentiation
  • Phenotypic evolution
  • Climate change
  • Crop wild relatives