Skip to main content

Developing first microsatellites and analysing genetic diversity in six chia (Salvia hispanica L.) cultivars

Abstract

Chia (Salvia hispanica L.), originated in central and southern Mexico and Guatemala, is an emerging industry crop due to its high content of omega‐3 fatty acids and dietary fiber in its seeds. The seeds also have a high concentration of proteins and essential amino acids, and are becoming a promising source of bioactive peptides. Polymorphic DNA markers are essential tools to analyse genetic diversity and to accelerate genetic improvement. However, in chia, polymorphic and codominant DNA markers are still lacking. In this study, fourteen polymorphic microsatellites were identified from DNA sequences and were characterized. The average allele number was 4.8 while the expected and observed heterozygosity was 0.24 and 0.34, respectively. The average probability of identity (PI) was 0.50 while the combined PI was 9 × 10–6. These first 14 microsatellites in chia are useful in genetic analysis and traceability. These 14 polymorphic microsatellites were used in analysing genetic diversity and population relationships in six cultivars originating in Mexico, Australia and Bolivia. Results showed that allelic diversity and gene diversity were low and ranged from 2.79 to 3.64 and 0.27 to 0.38, respectively. The Mexico black cultivar showed the highest allelic (3.64) and gene diversity (0.38). The six cultivars were closely related with high identity (≥ 0.893). Taken together, these chia cultivars contain low genetic variation. Therefore, to initiate a breeding program for improving traits, it is essential to use seeds from multiple cultivars to enlarge genetic variation in the founder population.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Ayerza R (2016) Crop year effects on seed yields, growing cycle length, and chemical composition of chia (Salvia hispanica L) growing in Ecuador and Bolivia. Emirates J Food Agricul 28:196–200

    Google Scholar 

  • Ayerza R, Coates W (2011) Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Indus Crop Prod 34:1366–1371

    CAS  Google Scholar 

  • Bai B, Wang L, Lee M, Zhang Y, Alfiko Y, Ye BQ et al (2017) Genome-wide identification of markers for selecting higher oil content in oil palm. BMC Plant Biol 17:93

    PubMed  PubMed Central  Google Scholar 

  • Cahill JP (2004) Genetic diversity among varieties of Chia (Salvia hispanica L.). Genet Resour Crop Evol 51:773–781

    CAS  Google Scholar 

  • Caruso MC, Favati F, Di Cairano M, Galgano F, Labella R, Scarpa T et al (2018) Shelf-life evaluation and nutraceutical properties of chia seeds from a recent long-day flowering genotype cultivated in Mediterranean area. Lwt-Food Sci Technol 87:400–405

    CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Falco B, Amato M, Lanzotti V (2017) Chia seeds products: an overview. Phytochem Rev 16:745–760

    Google Scholar 

  • Diez J, Tiranti JA, Sadras VO, Acreche MM (2021) The critical period for grain yield in chia (Salvia hispanica). Crop Pasture Sci 72:213–222

    CAS  Google Scholar 

  • Dincoglu AH, Yesildemir O (2019) A renewable source as a functional food: Chia seed. Cur Nutr Food Sci 15:327–337

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1: 117693430500100003

  • Ferreira F, Scapim CA, Maldonado C, Mora F (2018) SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks. Crop Breed Appl Biotechnol 18:309–313

    CAS  Google Scholar 

  • Geneve RL, Hildebrand DF, Phillips TD, Al-Amery M, Kester ST (2017) Stress influences seed germination in mucilage-producing Chia. Crop Sci 57:2160–2169

    CAS  Google Scholar 

  • Grancieri M, Martino HSD, de Mejia EG (2019) Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: a review. Comprehen Rev Food Sci Food Safety 18:480–499

    CAS  Google Scholar 

  • Grimes SJ, Phillips TD, Hahn V, Capezzone F, Graeff-Hoenninger S (2018) Growth, Yield performance and quality parameters of three early flowering chia (Salvia hispanica L.) genotypes cultivated in Southwestern Germany. Agri Basel 8:154

    CAS  Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O et al (2011) Current trends in microsatellite genotyping. Mol Ecol Res 11:591–611

    CAS  Google Scholar 

  • Iglesias-Puig E, Haros M (2013) Evaluation of performance of dough and bread incorporating chia (Salvia hispanica L.). Eur Food Res Technol 237:865–874

    CAS  Google Scholar 

  • Jamboonsri W, Phillips TD, Geneve RL, Cahill JP, Hildebrand DF (2012) Extending the range of an ancient crop, Salvia hispanica L.-a new omega 3 source. Genet Resour Crop Evol 59:171–178

    Google Scholar 

  • Jamshidi AM, Amato M, Ahmadi A, Bochicchio R, Rossi R (2019) Chia (Salvia hispanica L.) as a novel forage and feed source: a review. Ital J Agron 14:1–18

    Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan A (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    PubMed  Google Scholar 

  • Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetcova DV, Linder M, Jeandel C, Paris C, Desor F, Baranenko DA et al (2020) Nanoliposomes and nanoemulsions based on chia seed lipids: preparation and characterization. Intern J Mol Sci 21:9079

    CAS  Google Scholar 

  • Lewis P, Zaykin D (2000) Free program distributed by the authors over the internet from the GDA Home Page

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mack L, Munz S, Capezzone F, Hofmann A, Piepho HP, Claupein W et al (2018) Sowing date in Egypt affects chia seed yield and quality. Agron J 110:2310–2321

    CAS  Google Scholar 

  • McAloon K (2016) What you need to know about Australian grown Chia Seeds https://www.kissreadylips.com/blogs/news/what-you-need-to-know-about-australian-grown-chia-seeds

  • Miranda-Ramos K, Millan-Linares MC, Haros CM (2020) Effect of Chia as breadmaking ingredient on nutritional quality, mineral availability, and glycemic index of bread. Foods 9:663

    CAS  PubMed Central  Google Scholar 

  • Munoz LA, Cobos A, Diaz O, Aguilera JM (2013) Chia seed (Salvia hispanica): an ancient grain and a new functional food. Food Rev Int 29:394–408

    CAS  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M et al (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnolog Equip 32:261–285

    CAS  Google Scholar 

  • Orona-Tamayo D, Valverde M, Paredes-Lopez O (2017) Chia: the new golden seed for the 21st century: nutraceutical properties and technological uses, sustainable protein sources. Elsevier, Country, pp 265–281

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Google Scholar 

  • Pelaez P, Orona-Tamayo D, Montes-Hernandez S, Valverde ME, Paredes-Lopez O, Cibrian-Jaramillo A (2019) Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica (Chia). Sci Rep 9:9761

    PubMed  PubMed Central  Google Scholar 

  • Peterson GW, Dong Y, Horbach C, Fu Y-B (2014) Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity 6:665–680

    Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a program for detecting recent effective population size reductions from allele data frequencies. J Hered 90:502–503

    Google Scholar 

  • Pizarro PL, Almeida EL, Samman NC, Chang YK (2013) Evaluation of whole chia (Salvia hispanica L.) flour and hydrogenated vegetable fat in pound cake. Lwt-Food Sci Technol 54:73–79

    CAS  Google Scholar 

  • Pritchard JK, Wen W, Falush D (2010) Documentation for STRUCTURE software: Version 2. University of Chicago, Chicago

    Google Scholar 

  • Ramírez-Jaramillo G, Lozano-Contreras MG (2015) Potential for growing Salvia hispanica L., areas under rainfed conditions in Mexico. Agric Sci 6:1048

    Google Scholar 

  • Reyes-Caudillo E, Tecante A, Valdivia-Lopez MA (2008) Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem 107:656–663

    CAS  Google Scholar 

  • Ribes S, Pena N, Fuentes A, Talens P, Barat JM (2021) Chia (Salvia hispanica L.) seed mucilage as a fat replacer in yogurts: effect on their nutritional, technological, and sensory properties. J Dairy Sci 104:2822–2833

    CAS  PubMed  Google Scholar 

  • Rossi R, Bochicchio R, Labella R, Bitella G, Amato M (2020) Fodder yield, quality and growth of chia (Salvia hispanica L.) as affected by sowing density and top-dressing nitrogen fertilization. Agronomy-Basel 10:1980

    CAS  Google Scholar 

  • Sargi SC, Silva BC, Santos HMC, Montanher PF, Boeing JS, Santos OO et al (2013) Antioxidant capacity and chemical composition in seeds rich in omega-3: Chia, flax, and perilla. Food Sci Technol 33:541–548

    Google Scholar 

  • Schlötterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371

    PubMed  Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368

    PubMed  Google Scholar 

  • Sosa A, Ruiz G, Rana J, Gordillo G, West H, Sharma M et al (2016) Chia crop (Salvia hispanica L.): its history and importance as a source of polyunsaturated fatty acids omega-3 around the world: a review. J Crop Res Fert 1:1–9

    Google Scholar 

  • Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8

    CAS  Google Scholar 

  • Ullah R, Nadeem M, Khalique A, Imran M, Mehmood S, Javid A et al (2016) Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. J Food Sci Technol 53:1750–1758

    CAS  PubMed  Google Scholar 

  • Valdivia-López MÁ, Tecante A (2015) Chia (Salvia hispanica): a review of native Mexican seed and its nutritional and functional properties. Adv Food Nutri Res 75:53–75

    Google Scholar 

  • Wang L, Bai B, Huang S, Liu P, Wan ZY, Ye B et al (2017) QTL mapping for resistance to iridovirus in Asian seabass using genotyping-by-sequencing. Mar Biotechnol 19:517–527

    Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkie SE, Isaac PG, Slater RJ (1993) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theor Appl Genet 86:497–504

    CAS  PubMed  Google Scholar 

  • Wimberley J, Cahill J, Atamian HS (2020) De novo sequencing and analysis of Salvia hispanica tissue-specific transcriptome and identification of genes involved in terpenoid biosynthesis. Plants 9:405

    CAS  PubMed Central  Google Scholar 

  • Yeh F, Yang R, Boyle T (1999) Popgene version 1.31 quick user guide. University of Alberta, Alberta, pp 103–106

    Google Scholar 

  • Yue GH, Xia JH (2014) Practical considerations of molecular parentage analysis in fish. J World Aqua Soc 45:89–103

    Google Scholar 

  • Zettel V, Hitzmann B (2018) Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci Technol 80:43–50

    CAS  Google Scholar 

  • Zhao W, Chung J-W, Ma K-H, Kim T-S, Kim S-M, Shin D-I et al (2009) Analysis of genetic diversity and population structure of rice cultivars from Korea, China and Japan using SSR markers. Genes Genom 31:283–292

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Internal Funding of the Temasek Life Sciences Lab, Singapore

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: GHY; Data curation: GHY, CCL, ML, LW, ZJS; Formal analysis: GHY; Funding acquisition: GHY; Investigation: GHY, CCL, ML, LW, ZJS; Methodology: GHY, CCL, ML, LW, ZJS; Project administration: GHY; Resources: GHY; Software: GHY; Supervision: GHY; Validation: GHY, CCL, ML, LW, ZJS; Visualization: GHY; Roles/Writing—original draft: GHY; Writing—review & editing: GHY, CCL, ML, LW, ZJS.

Corresponding author

Correspondence to G. H. Yue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 27 kb)

Supplementary file2 (DOCX 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yue, G.H., Lai, C.C., Lee, M. et al. Developing first microsatellites and analysing genetic diversity in six chia (Salvia hispanica L.) cultivars. Genet Resour Crop Evol 69, 1303–1312 (2022). https://doi.org/10.1007/s10722-021-01305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01305-2

Keywords

  • Plant
  • Protein
  • Oil
  • Variation
  • Breeding
  • Microsatellite