Ayerza R (2016) Crop year effects on seed yields, growing cycle length, and chemical composition of chia (Salvia hispanica L) growing in Ecuador and Bolivia. Emirates J Food Agricul 28:196–200
Google Scholar
Ayerza R, Coates W (2011) Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Indus Crop Prod 34:1366–1371
CAS
Google Scholar
Bai B, Wang L, Lee M, Zhang Y, Alfiko Y, Ye BQ et al (2017) Genome-wide identification of markers for selecting higher oil content in oil palm. BMC Plant Biol 17:93
PubMed
PubMed Central
Google Scholar
Cahill JP (2004) Genetic diversity among varieties of Chia (Salvia hispanica L.). Genet Resour Crop Evol 51:773–781
CAS
Google Scholar
Caruso MC, Favati F, Di Cairano M, Galgano F, Labella R, Scarpa T et al (2018) Shelf-life evaluation and nutraceutical properties of chia seeds from a recent long-day flowering genotype cultivated in Mediterranean area. Lwt-Food Sci Technol 87:400–405
CAS
Google Scholar
Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014
CAS
PubMed
PubMed Central
Google Scholar
de Falco B, Amato M, Lanzotti V (2017) Chia seeds products: an overview. Phytochem Rev 16:745–760
Google Scholar
Diez J, Tiranti JA, Sadras VO, Acreche MM (2021) The critical period for grain yield in chia (Salvia hispanica). Crop Pasture Sci 72:213–222
CAS
Google Scholar
Dincoglu AH, Yesildemir O (2019) A renewable source as a functional food: Chia seed. Cur Nutr Food Sci 15:327–337
Google Scholar
Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1: 117693430500100003
Ferreira F, Scapim CA, Maldonado C, Mora F (2018) SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks. Crop Breed Appl Biotechnol 18:309–313
CAS
Google Scholar
Geneve RL, Hildebrand DF, Phillips TD, Al-Amery M, Kester ST (2017) Stress influences seed germination in mucilage-producing Chia. Crop Sci 57:2160–2169
CAS
Google Scholar
Grancieri M, Martino HSD, de Mejia EG (2019) Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: a review. Comprehen Rev Food Sci Food Safety 18:480–499
CAS
Google Scholar
Grimes SJ, Phillips TD, Hahn V, Capezzone F, Graeff-Hoenninger S (2018) Growth, Yield performance and quality parameters of three early flowering chia (Salvia hispanica L.) genotypes cultivated in Southwestern Germany. Agri Basel 8:154
CAS
Google Scholar
Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O et al (2011) Current trends in microsatellite genotyping. Mol Ecol Res 11:591–611
CAS
Google Scholar
Iglesias-Puig E, Haros M (2013) Evaluation of performance of dough and bread incorporating chia (Salvia hispanica L.). Eur Food Res Technol 237:865–874
CAS
Google Scholar
Jamboonsri W, Phillips TD, Geneve RL, Cahill JP, Hildebrand DF (2012) Extending the range of an ancient crop, Salvia hispanica L.-a new omega 3 source. Genet Resour Crop Evol 59:171–178
Google Scholar
Jamshidi AM, Amato M, Ahmadi A, Bochicchio R, Rossi R (2019) Chia (Salvia hispanica L.) as a novel forage and feed source: a review. Ital J Agron 14:1–18
Google Scholar
Kalia RK, Rai MK, Kalia S, Singh R, Dhawan A (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334
CAS
Google Scholar
Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106
PubMed
Google Scholar
Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549
CAS
PubMed
PubMed Central
Google Scholar
Kuznetcova DV, Linder M, Jeandel C, Paris C, Desor F, Baranenko DA et al (2020) Nanoliposomes and nanoemulsions based on chia seed lipids: preparation and characterization. Intern J Mol Sci 21:9079
CAS
Google Scholar
Lewis P, Zaykin D (2000) Free program distributed by the authors over the internet from the GDA Home Page
Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 44:397
CAS
PubMed
PubMed Central
Google Scholar
Mack L, Munz S, Capezzone F, Hofmann A, Piepho HP, Claupein W et al (2018) Sowing date in Egypt affects chia seed yield and quality. Agron J 110:2310–2321
CAS
Google Scholar
McAloon K (2016) What you need to know about Australian grown Chia Seeds https://www.kissreadylips.com/blogs/news/what-you-need-to-know-about-australian-grown-chia-seeds
Miranda-Ramos K, Millan-Linares MC, Haros CM (2020) Effect of Chia as breadmaking ingredient on nutritional quality, mineral availability, and glycemic index of bread. Foods 9:663
CAS
PubMed Central
Google Scholar
Munoz LA, Cobos A, Diaz O, Aguilera JM (2013) Chia seed (Salvia hispanica): an ancient grain and a new functional food. Food Rev Int 29:394–408
CAS
Google Scholar
Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M et al (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnolog Equip 32:261–285
CAS
Google Scholar
Orona-Tamayo D, Valverde M, Paredes-Lopez O (2017) Chia: the new golden seed for the 21st century: nutraceutical properties and technological uses, sustainable protein sources. Elsevier, Country, pp 265–281
Google Scholar
Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
Google Scholar
Pelaez P, Orona-Tamayo D, Montes-Hernandez S, Valverde ME, Paredes-Lopez O, Cibrian-Jaramillo A (2019) Comparative transcriptome analysis of cultivated and wild seeds of Salvia hispanica (Chia). Sci Rep 9:9761
PubMed
PubMed Central
Google Scholar
Peterson GW, Dong Y, Horbach C, Fu Y-B (2014) Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity 6:665–680
Google Scholar
Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a program for detecting recent effective population size reductions from allele data frequencies. J Hered 90:502–503
Google Scholar
Pizarro PL, Almeida EL, Samman NC, Chang YK (2013) Evaluation of whole chia (Salvia hispanica L.) flour and hydrogenated vegetable fat in pound cake. Lwt-Food Sci Technol 54:73–79
CAS
Google Scholar
Pritchard JK, Wen W, Falush D (2010) Documentation for STRUCTURE software: Version 2. University of Chicago, Chicago
Google Scholar
Ramírez-Jaramillo G, Lozano-Contreras MG (2015) Potential for growing Salvia hispanica L., areas under rainfed conditions in Mexico. Agric Sci 6:1048
Google Scholar
Reyes-Caudillo E, Tecante A, Valdivia-Lopez MA (2008) Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem 107:656–663
CAS
Google Scholar
Ribes S, Pena N, Fuentes A, Talens P, Barat JM (2021) Chia (Salvia hispanica L.) seed mucilage as a fat replacer in yogurts: effect on their nutritional, technological, and sensory properties. J Dairy Sci 104:2822–2833
CAS
PubMed
Google Scholar
Rossi R, Bochicchio R, Labella R, Bitella G, Amato M (2020) Fodder yield, quality and growth of chia (Salvia hispanica L.) as affected by sowing density and top-dressing nitrogen fertilization. Agronomy-Basel 10:1980
CAS
Google Scholar
Sargi SC, Silva BC, Santos HMC, Montanher PF, Boeing JS, Santos OO et al (2013) Antioxidant capacity and chemical composition in seeds rich in omega-3: Chia, flax, and perilla. Food Sci Technol 33:541–548
Google Scholar
Schlötterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371
PubMed
Google Scholar
Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368
PubMed
Google Scholar
Sosa A, Ruiz G, Rana J, Gordillo G, West H, Sharma M et al (2016) Chia crop (Salvia hispanica L.): its history and importance as a source of polyunsaturated fatty acids omega-3 around the world: a review. J Crop Res Fert 1:1–9
Google Scholar
Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8
CAS
Google Scholar
Ullah R, Nadeem M, Khalique A, Imran M, Mehmood S, Javid A et al (2016) Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): a review. J Food Sci Technol 53:1750–1758
CAS
PubMed
Google Scholar
Valdivia-López MÁ, Tecante A (2015) Chia (Salvia hispanica): a review of native Mexican seed and its nutritional and functional properties. Adv Food Nutri Res 75:53–75
Google Scholar
Wang L, Bai B, Huang S, Liu P, Wan ZY, Ye B et al (2017) QTL mapping for resistance to iridovirus in Asian seabass using genotyping-by-sequencing. Mar Biotechnol 19:517–527
Google Scholar
Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218
CAS
PubMed
PubMed Central
Google Scholar
Wilkie SE, Isaac PG, Slater RJ (1993) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theor Appl Genet 86:497–504
CAS
PubMed
Google Scholar
Wimberley J, Cahill J, Atamian HS (2020) De novo sequencing and analysis of Salvia hispanica tissue-specific transcriptome and identification of genes involved in terpenoid biosynthesis. Plants 9:405
CAS
PubMed Central
Google Scholar
Yeh F, Yang R, Boyle T (1999) Popgene version 1.31 quick user guide. University of Alberta, Alberta, pp 103–106
Google Scholar
Yue GH, Xia JH (2014) Practical considerations of molecular parentage analysis in fish. J World Aqua Soc 45:89–103
Google Scholar
Zettel V, Hitzmann B (2018) Applications of chia (Salvia hispanica L.) in food products. Trends Food Sci Technol 80:43–50
CAS
Google Scholar
Zhao W, Chung J-W, Ma K-H, Kim T-S, Kim S-M, Shin D-I et al (2009) Analysis of genetic diversity and population structure of rice cultivars from Korea, China and Japan using SSR markers. Genes Genom 31:283–292
CAS
Google Scholar