Skip to main content
Log in

Agro-morphological variability and genetic diversity in linseed (Linum usitatissimum L.) germplasm accessions with emphasis on flowering and maturity time

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Assessment of genetic diversity and extent of trait variation among germplasm accessions facilitate the effective use of genetic resources for varietal development. In linseed (Linum usitatissimum L.), early maturity is desirable as it helps avoid several biotic and abiotic stress. In present study, genetic variability of 220 accessions of linseed was studied using 25 agro-morphological traits for 2 years, 2017–2018 and 2018–2019. Remarkable variability was observed for flowering, maturity and other economically important traits such as thousand seed weight, capsule number, seed, and capsule area. Based on 2-year evaluation data for flowering and maturity traits, a panel of 34 accessions was constructed to study genetic diversity using SSR markers. Total 89 alleles were amplified with a mean of 3.069 alleles per locus. Polymorphism information content value ranged from 0.20 to 0.66 with mean of 0.42. Clustering based on SSR data followed the flowering-maturity trait pattern to a large extent. Genetic population structure analysis showed two populations in similarity with the trait groups. Analysis of molecular variance revealed 16% variance among the populations. Shannon's diversity information index within population I and II were 0.67 and 0.78, respectively. Additionally, allelic variation in a putative floral homeotic gene encoding APETALA2 transcription factor was studied in two early and two late accessions by PCR amplification and sequencing. Total 12 SNPs were identified, of which six could distinguish early and late accessions. The genetic and genomic resources identified here are expected to aid in linseed genetic improvement programme targeted to specific traits, especially, early flowering and maturity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Data will be publically available.

Code availability

Not applicable.

Abbreviations

SNP:

Single nucleotide polymorphism

nsSNP:

Non-synonymous single nucleotide polymorphism

SSR:

Simple sequence repeat

References

  • Aravind J, Mukesh, Sankar S, Wankhede DP, Kaur V (2019) Augmented RCBD: analysis of augmented randomized complete block designs. Version 0.1.1.9000. https://aravind-j.github.io/augmentedRCBD/

  • Bassett CM, Rodriguez-Leyva D, Pierce GN (2009) Experimental and clinical research findings on the cardiovascular benefits of consuming flaxseed. Appl Physiol Nutr Metab 34(5):965–974. https://doi.org/10.1139/H09-087

    Article  CAS  PubMed  Google Scholar 

  • Bickel CL, Gadani S, Lukacs M, Cullis CA (2011) SSR markers developed for genetic mapping in flax (Linum usitatissimum L.). Res Rep Biol 2:23–29

    CAS  Google Scholar 

  • Biodiversity International (2007) Guidelines for the development of crop descriptor lists. Biodiversity Technical Bulletin Series. Biodiversity International, Rome, Xii+72p

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrawati SN, Kumar R, Kumar S, Singh PK, Yadav VK, Ranade SA, Yadav HK (2017) Genetic diversity, population structure and association analysis in linseed (Linum usitatissimum L.). Physiol Mol Biol Plants 23(1):207–219. https://doi.org/10.1007/s12298-016-0408-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary SB, Sharma HK, Kumar AA, Chowdhury I et al (2017) Genetic diversity spectrum and marker trait association for agronomic traits in global accessions of Linum usitatissimum (L.) Ind. Crops Prod 108:604–615

    Google Scholar 

  • Clark LV, Jasieniuk M (2011) Polysat: an R package for polyploid microsatellite analysis. Mol Ecol Resour 11(3):562–566. https://doi.org/10.1111/j.1755-0998.2011.02985.x

    Article  PubMed  Google Scholar 

  • Clark LV, Schreier AD (2017) Resolving microsatellite genotype ambiguity in populations of allopolyploid and diploidized autopolyploid organisms using negative correlations between allelic variables. Mol Ecol Resour 17(5):1090–1103

    CAS  PubMed  Google Scholar 

  • Cloutier S, Niu Z, Datla R, Duguid S (2009) Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor Appl Genet 119(1):53–63

    CAS  PubMed  Google Scholar 

  • Cloutier S, Miranda E, Ward K, Radovanovic N, Reimer E, Walichnowski A, Datla R, Rowland G, Duguid S, Ragupathy R (2012) Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.). Theor Appl Genet 125:685–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    CAS  PubMed  Google Scholar 

  • Davidson J, Yermanos DM (1965) Flowering pattern of flax (Linum usitatissimum L.). Crop Sci 51:23–28

    Google Scholar 

  • Deng X, Long S, He D, Li X, Wang Y, Liu J, Chen X (2010) Development and characterization of polymorphic microsatellite markers in Linum usitatissimum. J Plant Res 123(1):119–123

    CAS  PubMed  Google Scholar 

  • Diederichsen A (2001) Comparison of genetic diversity of flax (Linum usitatissimum L.) between Canadian cultivars and a world collection. Plant Breed 120:360–362

    Google Scholar 

  • Diederichsen A, Richards K (2003) Cultivated flax and the genus L: taxonomy and germplasm conservation. In: Muir AD, Westcott ND (eds) Flax: the genus. CRC Press, London, pp 22–54

    Google Scholar 

  • Diederichsen A, Rozhmina TA, Zhuchenko AA, Richards KW (2006) Screening for broad adaptation in 96 flax (Linum usitatissimum L.) accessions under dry and warm conditions in Canada and Russia. Plant Genet Resour News l 146:9–16

    Google Scholar 

  • Diederichsen A, Kusters PM, Kessler D, Bainas Z, Gugel RK (2013) Assembling a core collection from the flax world collection maintained by Plant Gene Resources of Canada. Genet Resour Crop Evol 60:1479–1485. https://doi.org/10.1007/s10722-012-9936-1

    Article  Google Scholar 

  • Dikshit N, Sivaraj N (2015) Analysis of agro-morphological diversity and oil content in Indian linseed germplasm. Grasas Aceites 66:e060

    Google Scholar 

  • Dillman AC, Hopper TH (1943) Effect of climate on yield and oil content of flaxseed and iodine number of linseed oil. USDA Tech Bull 844:69

    Google Scholar 

  • Domantovich AV, Koshkin VA, BrutchMatvienko NB (2012) Investigation of photoperiod sensitivity of Linum usitatissimum L. lines and effect of short-day conditions on their economically valuable traits. Russ Agric Sci 38:173–177

    Google Scholar 

  • FAOSTAT (2018) http://www.fao.org/faostat/en/#data/QC. Accessed 18 May 2020

  • Ford JH, Zimmerman DC (1964) Influence of time of flowering on oil content and oil quality of flaxseed. Crop Sci 4:653–656

    Google Scholar 

  • Ganesan SK, Singh R, Choudhury DR, Bharadwaj J, Gupta V, Singode A (2014) Genetic diversity and population structure study of drumstick (Moringa oleifera Lam.) using morphological and SSR markers. Ind Crops Prod 60:316–325

    CAS  Google Scholar 

  • Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M (2014) Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol 51(9):1633–1653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall LM, Booker H, Siloto MPR, Jhala AJ, Weselake RJ (2016) Flax (Linum usitatissimum L.). In: Industrial oil crops. AOCS Press, pp 157–194, ISBN 9781893997981

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:1–9

    Google Scholar 

  • Hosseinian FS, Rowland GG, Bhirud PR, Dyck JH, Tyler RT (2004) Chemical composition and physicochemical and hydrogenation characteristics of high-palmitic acid solin (low-linolenic acid flaxseed) oil. JAOCS 81(2):185–188

    CAS  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    PubMed  Google Scholar 

  • Iqbal M, Navabi A, Salmon DF, Yang RC, Spaner D (2006) A genetic examination of early flowering and maturity in Canadian spring wheat. Can J Plant Sci 86(4):995–1004. https://doi.org/10.1139/G07-028

    Article  CAS  Google Scholar 

  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA 102:3117–3122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur V, Yadav R, Wankhede DP (2017) Linseed (Linum usitatissimum L.) genetic resources for climate change intervention and its future breeding. J Appl Nat Sci 9(2):1112–1118

    CAS  Google Scholar 

  • Kaur V, Kumar S, Yadav R, Wankhede DP, Aravind J, Radhamani J, Rana JC, Kumar A (2018) Analysis of genetic diversity in Indian and exotic linseed germplasm and identification of trait specific superior accessions. J Environ Biol 39:702–709

    CAS  Google Scholar 

  • Kim J, Manivannan A, Kim D et al (2019) Transcriptome sequencing assisted discovery and computational analysis of novel SNPs associated with flowering in Raphanus sativus in-bred lines for marker-assisted backcross breeding. Hortic Res 6:120. https://doi.org/10.1038/s41438-019-0200-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft JM, Kommedahl T, Linck AL (1963) Histological study of malformation in flaxseed after exposure to 31°C. Bot Gaz 125:367–371

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari R, Wankhede DP, Bajpai A, Maurya A, Prasad K, Gautam D et al (2019) Genome wide identification and characterization of microsatellite markers in black pepper (Piper nigrum): a valuable resource for boosting genomics applications. PLoS ONE 14(12):e0226002

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurt O, Bozkurt D (2006) Effect of temperature and photoperiod on seedling emergence of flax (Linum usitatissimum L.). J Agron 5:541–545

    Google Scholar 

  • Li YX, Li C, Bradbury PJ, Liu X, Lu F, Romay CM, Glaubitz JC, Wu X, Peng B, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Li Y, Wang T (2016) Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant J 86(5):391–402. https://doi.org/10.1111/tpj.13174

    Article  CAS  PubMed  Google Scholar 

  • Mahajan RK, Sapra RL, Srivastava U, Singh M, Sharma GD (2000) Minimal descriptors (for characterization and evaluation) of agri-horticultural crops (part I). National Bureau of Plant Genetic Resources, New Delhi

  • Nizar MA, Mulani RM (2015) Genetic diversity in indigenous and exotic linseed germplasm (L.). Electron J Plant Breed 6(3):848–854

    Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217

    CAS  PubMed  Google Scholar 

  • Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22:277–289

    PubMed  PubMed Central  Google Scholar 

  • Painter EP, Nesbitt LL, Stoa TE (1944) The influence of seasonal conditions on oil formation and changes in the iodine number during growth of flaxseed. J Am Soc Agron 36:204–213

    CAS  Google Scholar 

  • Pandey G, Misra G, Kumari K, Gupta S, Parida SK et al (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207. https://doi.org/10.1093/dnares/dst002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx V6.5, genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plessers AG (1961) The response of Raja Redwing flax to temperature and to supplementary incandescent light in growth chambers. Can J Plant Sci 41(4):81–127

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multi locus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rachinskaia OA, Lemesh VA, Muravenko OV et al (2011) (2011) Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers. Genetika 471:65–75

    Google Scholar 

  • Rathore A, Parsad R, Gupta VK (2005) Statistical package for augmented designs. IASRI, New Delhi

    Google Scholar 

  • Roux F, Touzet P, Cuguen J, Le-Corre V (2006) How to be early flowering: an evolutionary perspective. Trends Plant Sci 11(8):375–381

    CAS  PubMed  Google Scholar 

  • Salvi S, Sponza G, Morgante M et al (2007) Conserved noncoding genomic sequences associated with a flowering time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh T, Satapathy BS (2019) Intensification of pulses and oilseeds Intensification of pulses and oilseeds in rice fallows. Indian Farm 69(10):31–34

    Google Scholar 

  • Singh SK, Kole PC, Misra AK, Roy S, Arya L, Verma M, Bhardwaj R, Suneja P, Verma MR, Bhat K, Singh R (2017) Characterization of Perilla frutescens (Linn.) Britt based on morphological, biochemical and STMS markers. Ind Crops Prod 109:773–785

    CAS  Google Scholar 

  • Sirohi JS, Wasnik KG (2018) Photosensitivity at varietal level in Linseed. Indian J Plant Physiol 21:127–132

    Google Scholar 

  • Soto-Cerda BJ, Carrasco RJ, Aravena GA, Urbina HA, Navarro CS (2011) Identifying novel polymorphic microsatellites from cultivated flax (Linum usitatissimum L.) following data mining. Plant Mol Biol Rep 29:753–759. https://doi.org/10.1007/s11105-010-0270-5

    Article  Google Scholar 

  • Soto-Cerda BJ, Maureira-Butler I, Muñoz G, Rupayan A, Cloutier S (2012) SSR-based population structure, molecular diversity and linkage disequilibrium analysis of a collection of flax (Linum usitatissimum L.) varying for mucilage seed-coat content. Mol Breed 30(2):875–888

    Google Scholar 

  • Sun J, Young LW, House MA, Daba K, Booker HM (2019) Photoperiod sensitivity of Canadian flax cultivars and 5-azacytidine treated early flowering derivative lines. BMC Plant Biol 19:177. https://doi.org/10.1186/s12870-019-1763-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari KK, Singh A, Pattnaik S, Sandhi M et al (2015) Identification of a diverse mini-core panel of Indian rice germplasm based on genotyping using microsatellite markers. Plant Breed 134:164–171

    CAS  Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366

    Google Scholar 

  • Wiesner I, Wiesnerova D, Tejklova E (2001) Effect of anchor and core sequence in microsatellite primers on flax fingerprinting patterns. J Agric Sci 137:37–44. https://doi.org/10.1017/S0021859601001162

    Article  CAS  Google Scholar 

  • Worku N, Heslop-Harrison JS, Adugna W (2015) Diversity in 198 Ethiopian linseed (Linum usitatissimum) accessions based on morphological characterization and seed oil characteristics. Genet Resour Crop Evol 62:1037–1053. https://doi.org/10.1007/s10722-014-0207-1

    Article  Google Scholar 

  • Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen X, Schmid M (2010) Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22:2156–2170

    CAS  PubMed  PubMed Central  Google Scholar 

  • You FM, Booker HM, Duguid SD, Jia G, Cloutier S (2016) Accuracy of genomic selection in bi-parental populations of flax (Linum usitatissimum L.). Crop J 4:290–303. https://doi.org/10.1016/j.cj.2016.03.001

    Article  Google Scholar 

  • You FM, Jia G, Xiao J, Duguid SD, Rashid KY, Booker HM, Cloutier S (2017) Genetic variability of 27 traits in a core collection of flax (Linum usitatissimum L.). Front Plant Sci 8:1636. https://doi.org/10.3389/fpls.2017.01636

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang T (2013) Characterizing the flax core collection for earliness and canopy traits. MSc thesis, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World, 3rd edn. Oxford University Press, Oxford, pp 125–132

    Google Scholar 

  • Zuk M, Dorota R, Matuła J, Szopaa J (2015) Linseed, the multipurpose plant. Ind Crops Prod 75:165–177

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge funding from Science & Engineering Research Board (SERB), Government of India and Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi. Authors thank Director, ICAR-NBPGR and Heads, DGR, DGE for the research facilities and facilitation. Authors acknowledge Dr. Soma S. Marla and Dr. Sunil Archak for critically reading the manuscript and technical support from Mr. B. L. Meena (ACTO and Farm manager) in the field experiment. Authors also acknowledge the help extended by Dr. Nachiket Kotwaliwale, Principal Scientist, ICAR-Central Institute of Agricultural Engineering, Bhopal, MP, India in recording data for seed morphometry. Contributions of several scientists and technicians in exploration and conservation of linseed genetic resources over the time at ICAR-NBPGR is greatly acknowledged.

Funding

This study was supported by funding from Science and Engineering Research Board (SERB), Government of India in the form of Early Career Research Award (ECR/2017/001280) to DPW. This study is also part of ICAR-NBPGR institutional Project (PGR/DGR-BUR- DEL-01.01) and received institutional funding from the same.

Author information

Authors and Affiliations

Authors

Contributions

AS: Investigation, data curation, formal analysis, writing original draft; DP: Investigation; VK: Conceptualization, formal analysis; SK: Investigation; AB: Validation; JA: Resources, formal analysis; JR: Resources; SR: Conceptualization; RK: Supervision; SSG: Investigation AS: Supervision; DPW: Conceptualization, resources, funding acquisition, Supervision, writing original draft.

Corresponding author

Correspondence to Dhammaprakash Pandhari Wankhede.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have given consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saroha, A., Pal, D., Kaur, V. et al. Agro-morphological variability and genetic diversity in linseed (Linum usitatissimum L.) germplasm accessions with emphasis on flowering and maturity time. Genet Resour Crop Evol 69, 315–333 (2022). https://doi.org/10.1007/s10722-021-01231-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01231-3

Keywords

Navigation