Skip to main content

Advertisement

Log in

Distribution and eco-geographic characterization of Carica papaya L. native to Mexico

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Carica papaya L. is an important plant genetic resource that has a low level of genetic erosion. Knowing the distribution and eco-geography of native C. papaya in Mexico is critical for the implementation of strategies for its conservation and sustainable use. For such purpose, Geographic Information Systems (GIS) and multivariate analysis methods are useful for the eco-geographic characterization of plant genetic resources using external information sources and field collections of specimens. The objective of this study was to determine the distribution and environmental variables that define the eco-geographic zones of C. papaya native to Mexico, as well as to determine priority areas for in situ conservation of native papaya germplasm in Mexico. It was hypothesized that there are no differences on diversity of native papaya population among the eco-geographic zones in Mexico and that eco-geographic zones with warm-humid climate would have the best conditions for wild native papaya germplasm conservation. Data were obtained from papaya records of 222 specimens collected and belonging to the C. papaya collection ex situ (109, wild population; 108, homegardens; five, cultivated native varieties) and 449 from external sources. All records were georeferenced to perform an eco-geographic characterization using climatic, geophysical and edaphic variables, which were analyzed using GIS and multivariate methods. We found that C. papaya is distributed between 15 and 27°N, at an altitude from 2 to 2395.0 m, which shows a wide distribution. Carica papaya is distributed among four Eco-geographic Groups (EG) according to the cluster analysis. In general, C. papaya was found in warm and very hot climates with an average annual temperature higher than 18 °C. No papaya records were found for cold climates. Ten eco-geographic variables define the distribution of C. papaya in Mexico, nine climatic and one geophysical. The eco-geographic characterization of the territory (ELC maps) identified 16 eco-geographic categories for C. papaya, from which 15 were found to contain living specimens. Categories 11 and 13 presented the appropriate environmental conditions for in situ conservation. In the collection of native C. papaya, the EG and ELC maps detected categories that were represented, over-represented and under-represented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrol DP (2012) Pollination biology: biodiversity conservation and agricultural production. Springer, New York, p 792

    Book  Google Scholar 

  • Badillo VM (1971) Monografía de la familia caricaceae. Asociación de Profesores, Maracay, Venezuela, p 221

    Google Scholar 

  • Bioversity International (2013) Plan de acción estratégico para fortalecer la conservación y el uso de los recursos fitogenéticos mesoamericanos para la adaptación de la agricultura al cambio climático- PAEM 2014–2014. Cali, Colombia. p 66

  • Carvalho FA, Renner SS (2012) A dated phylogeny of the papaya family (Caricaceae) reveals the crop’s closest relatives and the family’s biogeographic history. Mol Phylogenet Evol 65:46–53

    Article  Google Scholar 

  • Chan YK (2009) Breeding papaya (Carica papaya L.). In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 121–159

    Chapter  Google Scholar 

  • Chávez-Pesqueira M, Suárez-Montes P, Castillo G, Núñez-Farfán J (2014) Habitat fragmentation threatens wild populations of Carica papaya (Caricaceae) in a lowland rainforest. Am J Bot 101:1092–1101

    Article  Google Scholar 

  • CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) (2001) Carta Fisonómica Estructural de la Vegetación de México. Escala 1:4 000 000. http://www.conabio.gob.mx/informacion/gis/

  • CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) (2005) División Política Estatal. Escala 1: 1 000 000. http://www.conabio.gob.mx/informacion/gis/

  • CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) (2012) Estrategia Mexicana para la conservación vegetal, 2012–2030. México DF, México. p. 90

  • Coppens dʼEeckenbrugge G, Restrepo MT, Jiménez D (2007) Morphological and isozyme characterization of common papaya in Costa Rica. Acta Hortic 740:109–120

    Article  Google Scholar 

  • Da Fonseca JMA, da Silva MMVW, Celso AC (2006) El estado del arte de los recursos genéticos en las Américas: conservación, caracterización y utilización. Embrapa, Brasil, p 60

    Google Scholar 

  • DOF (Diario Oficial de la Federación) (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo

  • FAOSTAT (Organización de las Naciones Unidas para la Agricultura y la Alimentación) (1992) Cultivos marginados: otra perspectiva de 1492. Colección FAO: Producción y protección vegetal, No. 26. Italia. p.339

  • FAOSTAT (Organización de las Naciones Unidas para la Agricultura y la Alimentación) (2001) Carica papaya Plant. http://ecoport.org/ep?Plant=630&entityType=PL****&entityDisplayCategory=PL****1500PL****1500 (May, 2016)

  • FAOSTAT (Organización de las Naciones Unidas para la Agricultura y la Alimentación) (2003) Papaya: Post-harvest operations. Instituto Tecnológico de Veracruz. México. 69 p. http://www.fao.org/in-action/inpho/crop-compendium/en/?page=3&ipp=7

  • FAOSTAT (Food and Agriculture Organization of the United Nations) (2009) International treaty on plant genetic resources for food and agriculture. Rome, Italy. p. 56. http://www.fao.org/plant-treaty/overview/texts-treaty/en/

  • Fresnedo-Ramírez J, Orozco-Ramírez Q (2013) Diversity and distribution of genus Jatropha in Mexico. Genet Resour Crop Evol 60:1087–1104

    Article  Google Scholar 

  • Fuentes G, Santamaría JM (2014) Papaya (Carica papaya L.): origin, domestication, and production. In: Ming R, Moore PH (eds) Genetics and genomics of papaya, plant genetics and genomics: Crops and models 10. Springer, New York, pp 3–15

    Chapter  Google Scholar 

  • Gabriel K (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453–467

    Article  Google Scholar 

  • García E (1998) Climas de la República Mexicana (clasificación de Köppen, modificado por García). Escala 1: 000 000. UNAM, México

  • GBIF (Global Biodiversity Information Facility) (2015) https://doi.org/10.15468/dl.lc67uj (September, 2015)

  • Gepts P (2008) Tropical environments, biodiversity, and the origin of crops. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, USA, pp 1–20

    Google Scholar 

  • Google Earth Pro (2019) ©2020 Google LLC. Version 7.1.2. USA

  • Gower CJ (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–874

    Article  Google Scholar 

  • Guarino L, Jarvis A, Hijmans RJ, Maxted N (2002) Geographic information systems (GIS) and the conservation and use of plant genetic resources. In: Engels JMM, Ramanatha VR, Brown AHD, Jackson MT (Eds.). Managing plant genetic diversity. CABI Publishing. pp: 387–404

  • Harlan JR (1992) Crops & Man, 2nd edn. American Society of Agronomy Inc, Crop Science Society of America Inc, Wisconsin, p 284

    Book  Google Scholar 

  • Hernández-Salinas G, Soto-Estrada A, García-Pérez E, Pérez-Vázquez A, Rocandio-Rodríguez M, Córdova-Téllez L (2019) Variación morfológica in situ de Carica papaya L. nativa de México. Rev Fitotec Mex 42:47–55

    Google Scholar 

  • Hijmans JR, Cameron S, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Garrett KA, Humán Z, Zhang DP, Schreuder M, Bonierbale M (2000) Assessing the geographic representativeness of genebank collections: the case of Bolivian wild potatoes. Conserv Biol 14:1755–1765

    Article  Google Scholar 

  • INEGI (Instituto Nacional de Estadística y Geografía) (2000) División municipal de México. Escala 1: 250 000- 1: 1 000 000. México

  • INEGI (Instituto Nacional de Estadística y Geografía) (2010) Localidades de la República Mexicana, 2010. Obtenido de Principales resultados por localidad (ITER). Censo de Población y Vivienda 2010. Editado por comisión nacional para el conocimiento y uso de la biodiversidad (CONABIO). México.

  • INEGI (Instituto Nacional de Estadística y Geografía) (2011) Conjunto de Datos Vectoriales de la Carta de Uso del Suelo y Vegetación. Escala 1: 1 000 000 Serie II. México

  • INFOASERCA (Agencia de Servicios a la Comercialización y Desarrollo de Mercados Agropecuarios) (1999) La papaya, un mercado en expansión. Claridades Agropecuarias, pp. 3–44

  • INIFAP-CONABIO (Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) (1995). Edafología. Escala 1: 250 000. México

  • IPGRI (Instituto Internacional de Recursos Fitogenéticos) (2002) El IPGRI en las Américas. Informe regional 1999–2002. Instituto Internacional de Recursos Fitogenéticos, Roma, Italia. p. 31

  • Jiménez MV, Mora-Newcomer E, Gutiérrez-Soto MV (2014) Biology of the papaya plant. In: Ming R, Moore PH (eds) Genetics and genomics of papaya, plant genetics and genomics: crops and models 10. Springer, New York, pp 17–33

    Chapter  Google Scholar 

  • Lépiz IR, Rodríguez EG (2006) Los recursos fitogenéticos de México. In: Molina MJC, Córdova TL (eds) Recursos fitogenéticos de México para la alimentación y la agricultura. Informe Nacional, Estado de México, pp 13–29

    Google Scholar 

  • Lim TK (2012) Edible medicinal and non-medicinal plants. Springer, New York, pp 693–717

    Book  Google Scholar 

  • Lobo BL, Torres CMC, de Martins JRPM, de Belem RNA, Abadie T (2003) Characterization of germplasm according to environmental conditions at the collecting site using GIS-two case studies from Brazil. Plant Gen Res Newsl 135:1–11

    Google Scholar 

  • López LR (2003) Principales rasgos geográficos de la República Mexicana. Investig Geográf 50:26–41

    Google Scholar 

  • Manshardt RM, Zee FTP (1994) Papaya germplasm and breeding in Hawaii. Fruit Var J 48:146–152

    Google Scholar 

  • Marinoni L, Bortoluzzi A, Parra-Quijano M, Zabala JM, Pensiero JF (2015) Evaluation and improvement of the ecogeographical representativeness of a collection of the genus Trichloris in Argentina. Genet Resour Crop Evol 62:593–604

    Article  Google Scholar 

  • Martínez-Villagomez M, Campos-Rojas E, Ayala-Arreola J, Barrientos-Priego AF, Espíndola-Barquera MC (2016) Diversidad y distribución del género Persea Mill., en México. Agroproductividad 4:72–77

    Google Scholar 

  • Moreira-Muñoz A (1996) Los Sistemas de Información geográfica y sus aplicaciones en la conservación de la diversidad biológica. Ciencia y Ambient 12:80–86

    Google Scholar 

  • Moreno NP (1980) Flora de Veracruz: Caricaceae Fascículo 10. Instituto Nacional de Investigaciones sobre Recursos Bióticos, Veracruz, p 17

    Google Scholar 

  • Morton J (1987) Papaya (Carica papaya L.). In: Morton JF (ed) Fruits of warm climates. Florida, Miami, pp 336–346

    Google Scholar 

  • Nakasone HY, Paull RE (1998) Papaya. In: Atherton J, Rees A (eds) Tropical fruits: crop production science in horticulture. CAB International, U. K., pp 239–269

    Google Scholar 

  • Ortega PR, Martínez AMA, Sánchez GJJ (2000) Recursos fitogenéticos autóctonos. In: Ramírez VP, Ortega PR, López HA, Castillo GF, Livera MM, Rincón SF, Zavala GF (eds) Recursos fitogenéticos para la alimentación y la agricultura, informe nacional. SNICS-SOMEFI, México, pp 77–95

    Google Scholar 

  • Parra-Quijano M, Iriondo JM, Torres E (2012) Review. applications of ecogeography and geographic information systems in conservation and utilization of plant genetic resources. Span J Agric Res 10:419–429

    Article  Google Scholar 

  • Parra-Quijano M, Draper D, Torres E, Iriondo JM (2008) Ecogeographical representativeness in crop wild relative ex situ collections. In: Maxted N, Ford-Lloyd, Kell SP, Iriondo JM, Dulloo ME, Turok J (Eds) Crop wild relative conservation and use. CAB International, UK. pp: 249–273

  • Parra-Quijano M, Torres E, Iriondo JM, López F (2015) Manual de usuario herramientas CAPFITOGEN versión 2.0. tratado internacional sobre los recursos fitogenéticos para la alimentación y la agricultura. FAO, Roma, p 194

    Google Scholar 

  • Páres J, Basso C (2013) Efecto del cloruro de sodio sobre el crecimiento y estado nutricional de plantas de papaya. Bioagro 25:109–116

    Google Scholar 

  • Pla LE (1986) Análisis multivariado: métodos de componentes principales. OEA. Secretaría General. Programa Regional de Desarrollo Científico y Tecnológico. Washington, DC (EUA). p. 94

  • Purseglove JW (1968) Tropical crops dicotyledons, 3rd edn. Longman Scientific & Technical, New York, pp 45–51

    Google Scholar 

  • Ramírez-Galindo J, Cruz-Castillo JG, Gallegos-Vázquez C, de la Espíndola-Barquera MC, Nieto-Ángel R, Avendaño-Arrazate CH, Domínguez-Álvarez JL, Villegas-Monter A, Ávila-Reséndiz C, Arreola-Ávila J, Armella-Villalpando MA, Hernández-Fuentes LM, Padilla-Ramírez JS, Betancourt-Olvera M, Moreno-Martínez JL, Méndez-Valverde AR (2016) Conservación y aprovechamiento sostenible de frutales nativos de Mexico. SNCIS-UACH, Mexico, p 139

    Google Scholar 

  • Rawlings JO (1988) Applied regression analysis: a research tool. California, USA, p 553

    Google Scholar 

  • Renneberg R (2007) Biotechnology for beginners. Academic Press of Elsevier, München, p 360

    Google Scholar 

  • Ruiz CJA, Ramírez DJL, Hernández CJM, Sánchez GJJ, Ortega CA, Medina GG, Ramírez OG (2011) Razas mexicanas de maíz como fuente de germoplasma para la adaptación al cambio climático. Revista Mexicana de Ciencias Agrícolas 2:365–379

    Google Scholar 

  • SAS (Statistical Analysis System) (2002) SAS User´s Guide: Statistics. Version 9.0. SAS Institute. Cary, NC, USA

  • Scheldeman X, Willemen L, Coppens d’Eeckenbrugge G, Romeijn-Peeters E, Restrepo MT, Romero-Motoche J, Jiménez D, Lobo M, Medina CI, Reyes C, Rodríguez D, Ocampo JA, Van-Damme P, Goetgebeur P (2007) Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. In: Hawksworth DL, Bull AT (Eds) Plant conservation and biodiversity, Springer. Dordrecht, The Netherlands. pp: 293–310

  • SEMARNAT (Secretaria de Medio Ambiente y Recursos Naturales) (2002) Norma oficial Mexicana Nom-021-SEMARNT-2000, especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdf

  • SEMARNAT-CP (Secretaria de Medio Ambiente y Recursos Naturales y Colegio de Postgraduados) (2003) Evaluación de la degradación del suelo causada por el hombre en la República Mexicana. Escala 1: 250 000

  • SIAP (Servicio de Información Agroalimentaria y Pesquera) (2011) Seguimiento oportuno de comercio en economía. Consultado por producto. http://w6.siap.gob.mx/comercio/con_producto.php (April, 2019)

  • Soriano-Melgar LLA, Alcaraz-Meléndez L, Rodríguez-Álvarez M, Real-Cosío S (2016) Colecta y conservación in vitro y ex situ de recursos fitogenéticos de Carica papaya L. Agroproductividad 9:28–32

    Google Scholar 

  • Teran S, Rasmussen CH (1995) Genetic diversity and agricultural strategy in 16th century and present day Yucatán milpa agriculture. Biodivers Conserv 4:363–381

    Article  Google Scholar 

  • Tropicos (2015) Missouri botanical garden. http://www.tropicos.org/NamePage.aspx?nameid=6100032&tab=specimens. (April, 2016).

  • Villavicencio NMA, Pérez EBE (2005) Guía de la flora útil de la Huasteca y la zona Otomí-Tepehua, Hidalgo I. UAEH, Pachuca, Hidalgo, México. p. 171

Download references

Acknowledgements

To Dr. Catarino Ávila Reséndiz (RIP) for initially leading this research. To the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the scholarship awarded to the first author for his postgraduate studies. To the SINAREFI-SAGARPA for the research grant. To the homegarden owners for donating specimens of C. papaya.

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed to this research as follows: conceptualization (AS-E and GH-S), methodology (EG-P and AP-V), funding acquisition (LC-T), formal analysis and investigation (GH-S and ML-C), writing original draft (GH-S), writing review and editing (ML-C and AS-E), supervision (AS-E).

Corresponding author

Correspondence to Alejandra Soto-Estrada.

Ethics declarations

Conflict of interest

The authors have no financial interests or conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Salinas, G., Luna-Cavazos, M., Soto-Estrada, A. et al. Distribution and eco-geographic characterization of Carica papaya L. native to Mexico. Genet Resour Crop Evol 69, 99–116 (2022). https://doi.org/10.1007/s10722-021-01207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01207-3

Keywords

Navigation