Skip to main content

Broadening the genetic base of cultivated chickpea following introgression of wild Cicer species-progress, constraints and prospects

Abstract

The narrow genetic base of cultivated chickpea (Cicer arietinum L.) has hindered the progress in realizing high genetic gains in chickpea breeding programs. Moreover, different abiotic and biotic stresses are the major bottlenecks hampering chickpea productivity across the world. To attain further breakthrough for improving yield and stability in future cultivars, new gene sources should be identified and incorporated into the cultivated background. There is an urgent need for systematic characterization, evaluation and utilization of target traits from wild Cicer species to solve the problems associated with reduced crop production, thereby broadening the genetic base of cultivated gene pool. Furthermore, advances in chickpea genomics would facilitate breeding of climate resilient chickpea cultivars for sustainable agricultural production system. The review discusses the progress made in chickpea genetic improvement using wild species, including focus on gene pool and species distribution, germplasm conservation, characterization, evaluation and utilization of useful traits into the cultivated species.

This is a preview of subscription content, access via your institution.

Fig. 1

(Adapted from Harlan and de Wet 1971; van der Maesen 1987)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbo S, Jens Berger J, Turner NC (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    PubMed  Google Scholar 

  2. Abbo S, Molina C, Jungmann R, Grusak MA, Berkovitch Z, Reifen R (2005) Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea. Theor Appl Genet 111:185–195

    CAS  PubMed  Google Scholar 

  3. Agarwal G, Jhanwar S, Priya P, Singh VK, Saxena MS, Parida SK et al (2012) Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS ONE 7:e52443

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Aggarwal PR, Nag P, Choudhary P, Chakraborty N, Chakroborty S (2018) Genotype independent Agrobacterium rhizogenes-mediated root transformation of chickpea: a rapid and efficient method for reverse genetics studies. Plant Methods 14:55

    PubMed  PubMed Central  Google Scholar 

  5. Ahmad F (1989) The chromosomal architecture of Cicer anatolicum Alef., a wild perennial relative of chickpea. Cytologia 54:753–757

    Google Scholar 

  6. Ahmad F (1999) Random amplified polymorphic DNA (RAPD) analysis reveals genetic relationships among the annual Cicer species. Theor Appl Genet 98:657–663

    CAS  Google Scholar 

  7. Ahmad F, Slinkard AE (2003) Limitations to bridge species facilitated alien gene transfer in chickpea pre-fertilization events. J Genet Breed 23:45–49

    Google Scholar 

  8. Ahmad F, Slinkard AE (2004) The extent of embryo and endosperm growth following interspecific hybridization between Cicer arietinum L. and related annual wild species. Genet Resour Crop Evol 51:765–772

    Google Scholar 

  9. Ahmad F, Gaur PM, Croser J (2005) Chickpea. In: Singh RJ, Jauhar PP (eds) Genetic Resources, chromosome engineering, and crop improvement, Grain Legumes. CRC Press, New York, pp 187–217

    Google Scholar 

  10. Ahmad S, Khan MA, Sahi ST, Ahmad R (2013) Evaluation of chickpea germplasm against Ascochyta rabiei. J Plant Sci 23:440–443

    Google Scholar 

  11. Ali L, Deokar A, Caballo C, Tar’an B, Gil J, Chen W et al (2016) Fine mapping for double podding gene in chickpea. Theor Appl Genet 129:77–86

    CAS  PubMed  Google Scholar 

  12. Ali MY, Krishnamurthy L, Saxena NP, Rupela OP, Kumar J, Johansen C (2002) Scope for genetic manipulation of mineral acquisition in chickpea. Plant Soil 245:123–134

    CAS  Google Scholar 

  13. Amalraj A, Taylor J, Bithell S, Li Y, Moore K, Hobson K, Sutton T (2019) Mapping resistance to Phytophthora root rot identifies independent loci from cultivated (Cicer arietinum L.) and wild (Cicer echinospermum P.H. Davis) chickpea. Theor Appl Genet 132:1017–1033

    CAS  PubMed  Google Scholar 

  14. Anderson JR, Lübberstedt T (2003) Functional markers in Plants. Trends Plant Sci 8:554–560

    Google Scholar 

  15. Andeden EE, Baloch FS, Derya M, Kilian B, Özkan H (2013) iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species. J Plant Biochem Biotechnol 22:453–466

    CAS  Google Scholar 

  16. Anuradha C, Gaur PM, Pande S, Gali KK, Ganesh M, Kumar J, Varshney RK (2011) Mapping QTLs for resistance to botrytis grey mould in chickpea. Euphytica. https://doi.org/10.1007/s10681-011-0394-1

  17. Archak S, Tyagi RK, Harer PN, Mahase LB, Singh N, Dahiya OP, Abdul Nizar M, Singh M, Bansal KC (2016) Characterization of chickpea germplasm conserved in the Indian National Gene Bank and development of core set using qualitative and quantitative data. The Crop J 4:417–424

    Google Scholar 

  18. Aryamanesh N, Nelson MN, Yan G, Clarke HJ, Siddique KHM (2010) Mapping a major gene for growth habit and QTLs for Ascochyta blight resistance and flowering time in a population between C. arietinum and C. reticulatum. Euphytica 173:307–331

    Google Scholar 

  19. Badami PS, Mallikarjuna N, Moss JP (1997) Interspecific hybridization between Cicer arietinum and C. pinnatifidum. Plant Breed 116:393–395

  20. Bajaj D, Saxena MS, Kujur A, Das S, Badoni S, Tripathi S, Swarup P (2015a) Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. J Exp Bot 66:1271–1290

    CAS  PubMed  Google Scholar 

  21. Bajaj D, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2015b) Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea. Sci Rep 5:12468

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Basandrai AK, Pande S, Basandrai D (2008) Recent advances in host-parasite interaction, chickpea Ascochyta rabaie and Botrytis cinerea systems. In: Setia RC, Nayyar H, Setia N (eds) Crop improvement, strategies and applications. IK International, New Delhi, pp 265–301

    Google Scholar 

  23. Basu U, Bajaj D, Sharma A, Malik N, Daware A, Narnoliya L, Thakro V et al (2019) Genetic dissection of photosynthetic efficiency traits for enhancing seed yield in chickpea. Plant Cell Environ 42:158–173

    CAS  PubMed  Google Scholar 

  24. Berger J, Abbo S, Turner NC (2003) Ecogeography of annual wild Cicer species: the poor state of the world collection. Crop Sci 43:1076–1090

    Google Scholar 

  25. Berger JD, Buck R, Henzell JM, Turner NC (2005) Evolution in the genus Cicer-vernalization response and low temperature pod set in domesticated chickpea and its wild relatives. Aust J Agric Res 56:1191–1200

    Google Scholar 

  26. Berger JD, Kumar S, Nayyar H, Street KA, Sandhu J, Henzell JM, Kaur J, Clarke HC (2012) Temperature stratified screening of chickpea genetic resource collections reveals very limited reproductive chilling tolerance compared to its annual wild relatives. Field Crop Res 126:119–129

    Google Scholar 

  27. Bhatnagar-Mathur P, Vadez V, Jyotsna Devi M, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23:591–606

    CAS  Google Scholar 

  28. Bhardwaj R, Sandhu JS (2009) Pollen viability and pod formation in chickpea (Cicer arietinum L.) as a criterion for screening and genetic studies of cold tolerance. Indian J Agric Sci 79:63–65

    Google Scholar 

  29. Bhaskarla V, Zinta G, Ford R, Jain M, Varshney RK, Mantri N (2020) Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea (Cicer arietinum L.). Int J Mol Sci 21:1781

    CAS  PubMed Central  Google Scholar 

  30. Bortesi L, Fischer RB (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotech Adv 33:41–52

    CAS  Google Scholar 

  31. Bretag TW, MacLeod WJ, Kimber RBE et al (2008) Management of ascochyta blight in chickpeas in Australia. Aust Plant Pathol 37:486–497

    CAS  Google Scholar 

  32. Buhariwalla HK, Jayashree B, Eshwar K, Crouch JH (2005) Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol 5:10–19

    Google Scholar 

  33. Caballo C, Castro P, Gil J, Millan T, Rubio J, Die JV (2019) Candidate genes expression profiling during wilting in chickpea caused by Fusarium oxysporum f. sp. ciceris race 5. PLoS ONE 14(10):e0224212

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Canci H, Toker C (2009a) Evaluation of annual wild Cicer species for drought and heat resistance under field conditions. Genet Resour Crop Evol 56:1–6

    Google Scholar 

  35. Canci H, Toker C (2009b) Evaluation of yield criteria for drought and heat resistance in chickpea. J Agron Crop Sci 19:47–54

    Google Scholar 

  36. Ceylan FO, Adak A, Sari D, Sari H, Toker C (2019) Unveiling of suppressed genes in interspecific and backcross populations derived from mutants of Cicer species. Crop Past Sci 70:254–262

    CAS  Google Scholar 

  37. Chandel KPS (1984) A note on the occurrence of wild C. microphyllum Benth. and its nutrient status. Int Chickpea Newsl 10:4–5

    Google Scholar 

  38. Chaturvedi SK, Nadarajan N (2010) Genetic enhancement for grain yield in chickpea–accomplishments and resetting research agenda. Electron J Plant Breed 14:611–615

    Google Scholar 

  39. Choudhary S, Gaur R, Gupta S, Bhatia S (2012b) EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theor Appl Genet 124:1449–1462

    CAS  PubMed  Google Scholar 

  40. Choumane W, Winter P, Weigand F, Kahl G (2000) Conservation and variability of sequence tagged microsatellite sites (STMSs) from chickpea (Cicer arietinum L.) within the genus Cicer. Theor Appl Genet 101:269–278

    CAS  Google Scholar 

  41. Clarke HJ, Siddique KHM (2004) Response of chickpea genotypes to low temperature stress during reproductive development. Field Crop Res 90:323–334

    Google Scholar 

  42. Clarke H, Khan TN, Siddique KHM (2004) Pollen selection for chilling tolerance at hybridisation leads to improved chickpea cultivars. Euphytica 139:65–74

    Google Scholar 

  43. Clarke HJ, Wilson JG, Kou I, Lulsdorf MM, Mallikarjuna N, Kou J et al (2006) Embryo rescue and plant regeneration in vitro of selfed chickpea (Cicer arietinum L.) and its wild annual relatives. Plant Cell Tissue Organ Cult 85:197–204

    Google Scholar 

  44. Clarke HJ, Kumari M, Khan TN, Siddique KHM (2011) Poorly formed chloroplasts are barriers to successful interspecific hybridization in chickpea following in vitro embryo rescue. Plant Cell Tissue Organ Cult 106:465

    CAS  Google Scholar 

  45. Cobos MJ, Fernandez M, Rubio J, Kharrat M, Moreno MT, Gil J, Millán T (2005) A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: location of genes for resistance to Fusarium wilt race 0. Theor Appl Genet 110:1347–1353

    CAS  PubMed  Google Scholar 

  46. Collard BCY, Ades PK, Pang ECK, Brouwer JB, Taylor PWJ (2001) Prospecting for sources of resistance to Ascochyta blight in wild Cicer species. Aust Plant Pathol 30:271–276

    Google Scholar 

  47. Collard BCY, Pang ECK, Ades PK, Taylor PWJ (2003) Preliminary investigation of QTLs associated with seedling resistance to Ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107:719–729

    CAS  PubMed  Google Scholar 

  48. Coram TE, Pang ECK (2005) Isolation and analysis of candidate Ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiol Mol Plant Pathol 66:192–200

    CAS  Google Scholar 

  49. Croser JS, Ahmad CF, Clarke HJ, Siddique KHM (2003) Utilisation of wild Cicer in chickpea improvement-progress, constraints and prospects. Aust J Agric Res 54:429–444

    Google Scholar 

  50. Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Das S, Singh M, Srivastava R, Bajaj D, Saxena MS, Rana JC, Bansal KC, Tyagi AK, Parida SK (2016) mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res 23:53–65

    CAS  PubMed  Google Scholar 

  52. Devasirvatham V, Tan DKY (2018) Impact of high temperature and drought stresses on chickpea production. Agronomy 8:145

    CAS  Google Scholar 

  53. Devasirvatham V, Gaur PM, Mallikarjuna N, Tokachichu RN, Trethowan RM, Tan DK (2012) Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct Plant Biol 39:1009–1018

    PubMed  Google Scholar 

  54. Di Vito M, Greco N, Singh KB, Saxena MC (1988) Response of chickpea germplasm lines to Heterodera ciceri attack. Nematol Mediterr 16:17–18

    Google Scholar 

  55. Di Vito M, Zaccheo G, Catalano F (1995) Response of chickpea lines to Meloidogyne artiella and Pratylenchus thornei. Suppl Nematol Mediterr 23:81

    Google Scholar 

  56. Di Vito M, Singh KB, Greco N, Saxena MC (1996) Sources of resistance to cyst nematode in cultivated and wild Cicer species. Genet Resour Crop Evol 43:103–107

    Google Scholar 

  57. Dixit GP (2018) Project Coordinator’s Report of All India Coordinated Research Project on Chickpea. Indian Institute of Pulses Research, Kanpur

    Google Scholar 

  58. Dixit GP, Srivastava AK, Singh NP (2019) Marching towards self-sufficiency in chickpea. Curr Sci 116:239–242

    Google Scholar 

  59. Doddamani D, Mohan AVSK, Katta MAVSK, Khan AW, Agarwal G, Shah TM, Varshney RK (2014) CicArMiSatDB: the chickpea microsatellite database. BMC Bioinform 15:212

    Google Scholar 

  60. Doddamani D, Khan AW, Katta MAVSK, Agarwal G, Thudi M, Ruperao P, Edwards D, Varshney RK (2015) CicArVarDB: SNP and InDel database for advancing genetics research and breeding applications in chickpea. Database 19:2015

    Google Scholar 

  61. Eker T, Erler F, Adak A, Imrek B, Guven H, Tosun HS, Sari D, Sari H, Upadhyaya HD, Toker C, Ikten C (2018) Screening of chickpea accessions for resistance against the pulse beetle, Callosobruchus chinensis L. (Coleoptera: bruchidae). J Stored Prod Res 76:51–57

    Google Scholar 

  62. Erskine W, Hussain A, Tahir M, Bahksh A, Ellis RH, Summerfield RJ, Roberts EH (1994) Field evaluation of a model of photothermal flowering responses in a world lentil collection. Theor Appl Genet 88:423–428

    CAS  PubMed  Google Scholar 

  63. Ertürk A, Gül M (2018) Input usage and problems in chickpea production in Kütahya Province, Turkey. Scientific Papers Series Management. Economic Engineering in Agriculture Rural Development 18:171–178

    Google Scholar 

  64. FAO (2017) FAOSTAT. Accessed 30 Mar 2020

  65. FAOSTAT (2016) Food and agriculture data. Accessed 15 Feb 2020

  66. Ganguly M, Molla KA, Karmakar S, Datta K, Datta SK (2014) Development of pod borer-resistant transgenic chickpea using a pod-specific and a constitutive promoter-driven fused cry1Ab/Ac gene. Theor Appl Genet 127:2555–2565

    CAS  PubMed  Google Scholar 

  67. Garg V, Khan AW, Kudapa H, Kale SM, Chitikineni A, Qiwei S, Sharma M, Li C, Zhang B, Xin L, Kishor PBK, Varshney RK (2019) Integrated transcriptome, small RNA and degradome sequencing approaches provide insights into Ascochyta blight resistance in chickpea. Plant Biotechnol J 17:914–931

    CAS  PubMed  Google Scholar 

  68. Gaur PM, Slinkard AE (1990a) Genetic control and linkage relations of additional isozymes markers in chickpea. Theor Appl Genet 80:648–653

    CAS  PubMed  Google Scholar 

  69. Gaur PM, Slinkard AE (1990b) Inheritance and linkage of isozyme coding genes in chickpea. J Hered 81:455–459

    CAS  Google Scholar 

  70. Gaur PM, Mallikarjuna N, Knights T, Beebe S, Debouck D, Mejía A, Malhotra RS, Imtiaz M, Sarker A, Tripathi S, Gowda CLL (2010) Gene introgression in grain legumes. In: Gupta S, Ali M, Singh BB (eds) Grain legumes: genetic improvement, management and trade. Indian Society of Pulses Research and Development, Indian Institute of Pulses Research, Kanpur, pp 1–17

    Google Scholar 

  71. Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221

    Google Scholar 

  72. Gaur R, Jeena G, Shah N, Gupta S, Pradhan S, Tyagi AK, Jain M, Chattopadhyay D, Bhatia S (2015) High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. Sci Rep 5:13387

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gaur PM, Samineni S, Thudi M, Tripathi S, Sajja SB, Jayalakshmi V et al (2019) Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breed 138:389–400

    CAS  Google Scholar 

  74. Gayali S, Acharya S, Lande NV, Pandey A, Chakraborty S, Chakraborty N (2016) CicerTransDB 1.0: a resource for expression and functional study of chickpea transcription factors. BMC Plant Biol 16:169

    PubMed  PubMed Central  Google Scholar 

  75. Golla SK, Rajasekhar P, Akbar SMD, Sharma HC (2018) Proteolytic activity in the midgut of Helicoverpa armigera (Noctuidae: Lepidoptera) larvae fed on wild relatives of Chickpea, Cicer arietinum. J Econ Entomol 111(5):2409–2415

    CAS  PubMed  Google Scholar 

  76. Gowda SJM, Radhika P, Kadoo NY, Mhase LB, Gupta VS (2009) Molecular mapping of wilt resistance genes in chickpea. Mol Breed 24:177–183

    CAS  Google Scholar 

  77. Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P, Bhanu Prakash A, Farmer A, Bhide M, Shah T, Gaur PM, Upadhyaya HD, Bhatia S, Cook DR, May GD, Varshney RK (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor Appl Genet 122:1577–1589

    PubMed  PubMed Central  Google Scholar 

  78. Gupta S, Parihar AK (2015) Broadening the genetic base of pulse crops. In: Dixit GP, Singh J, Singh NP (eds) Pulses- Challenges and opportunities under changing climate scenario. Indian Society of Pulses Research and Development, IIPR, Kanpur, pp 86–101

    Google Scholar 

  79. Gupta PK, Varshney RK (2000) The Development and use of microsatellite markers for genetic analysis and Plant Breeding with emphasis on bread wheat. Euphytica 113:163–185

    CAS  Google Scholar 

  80. Gupta S, Nawaz K, Parween S, Roy R, Sahu K, Kumar Pole A, Khandal H, Srivastava R, Kumar Parida S, Chattopadhyay D (2017) Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res 24:1–10

    PubMed  Google Scholar 

  81. Harlan JR, de Wet MJ (1971) Towards a rational classification of crop plant. Taxonomy 20:509–517

    Google Scholar 

  82. Haware MP, Nene YL, Pundir RPS, Narayana Rao J (1992) Screening of world chickpea germplasm for resistance to Fusarium wilt. Field Crops Res 30:147–154

    Google Scholar 

  83. Hegde VS, Tripathi S, Bharadwaj C, Agrawal PK, Choudhary AK (2018) Genetics and genomics approaches to enhance adaptation and yield of chickpea (Cicer arietinum L.) in semi-arid environments. Sabrao J Breed Genet 50:217–241

    Google Scholar 

  84. Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanu PA, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, Kavi Kishor PB, Shah T, Srinivasan Lohse RM, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA et al (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716–732

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Houari SO, Bouteflika DA, Lamamra AA (2015) An assessment of wild Cicer species accessions for resistance to three pathotypes of Ascochyta rabiei (Pass.) Labr. in Algeria. Afr J Agron 3:228–234

    Google Scholar 

  87. Husnain T, Fatima T, Islam R, Riazuddin S (2000) Plant regeneration and expression of beta-glucorinidase gene in hypocotyls tissue of chickpea (Cicer arietinum L.). Pak J Biol Sci 3:842–845

    Google Scholar 

  88. Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26:755–763

    CAS  PubMed  Google Scholar 

  89. IPCC (2014) Climate Change: Synthesis Report. In: Pachauri RK, Meyer LA (eds) Contribution of Working Group I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, pp. 6–8

  90. Iruela M, Rubio J, Barro F, Cubero JI, Millan T, Gil J (2006) Detection of two quantitative trait loci for resistance to Ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): Development of SCAR markers associated with resistance. Theor Appl Genet 112:278–287

    CAS  PubMed  Google Scholar 

  91. Jain M, Chevala VV, Garg R (2014) Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing. J Exp Bot 65:5945–5958

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jaiswal HK, Singh BD, Singh AK, Singh RM (1986) Introgression of genes for yield and yield traits from C. reticulatum into C. arietinum. International Chickpea Newsletter 14:5–8

    Google Scholar 

  93. Jendoubi W, Bouhadida M, Boukteb A, Béji M, Kharrat M (2017) Fusarium wilt affecting chickpea crop. Agriculture 7:23

    Google Scholar 

  94. Jha UC, Bohra A, Singh NP (2014a) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Google Scholar 

  95. Jha UC, Chaturvedi SK, Bohra A, Basu PS, Khan MS, Debmalya B (2014b) Abiotic stresses, constraints and improvement strategies in chickpea. Plant Breed 133:163–178

    Google Scholar 

  96. Jhanwar S, Priya P, Garg R, Parida SK, Tyagi AK, Jain M (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10:690–702

    CAS  PubMed  Google Scholar 

  97. Jiménez-Díaz RM, Castillo P, del Mar Jiménez-Gasco M, Landa BB, Navas-Cortés JA (2015) Fusarium wilt of chickpeas: Biology, ecology and management. Crop Prot 73:16–27

    Google Scholar 

  98. Kaloki P, Devasirvatham V, Tan DKY (2019) Chickpea abiotic stresses: Combating drought, heat and cold. Intech Open https://doi.org/10.5772/intechopen.83404

    Article  Google Scholar 

  99. Kar S, Basu D, Das S, Ramakrishnan NA, Mukherjee P et al (1997) Expression of cry1Ac gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod borer (Heliothis armigera) larvae. Transgenic Res 6:177–185

    CAS  Google Scholar 

  100. Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna H, Chandra S, Vadez V et al (2005) Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 146:213–222

    Google Scholar 

  101. Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Gaur PM (2008) Rapid screening technique for canopy temperature status and its relevance to drought tolerance improvement in chickpea. J SAT Agric Res 6:4–105

    Google Scholar 

  102. Kaur A, Sandhu JS, Gupta SK, Bhardwaj R, Bansal UK, Saini RG (2010) Genetic relationships among annual wild Cicer species using RAPD analysis. Indian J Agric Sci 80(4):309–311

    Google Scholar 

  103. Kaur L, Sirari A, Kumar D, Sandhu JS, Singh S, Singh I, Kapoor K, Gowda CLL, Pande S, Gaur P, Sharma M, Imtiaz M, Siddique KHM (2013) Harnessing ascochyta blight and botrytis grey mould resistance in chickpea through interspecific hybridization. Phytopathol Mediterr 52(1):157–165

    CAS  Google Scholar 

  104. Kazan K, Muehlbauer FJ, Weeden NF, Ladizinsky G (1993) Inheritance and linkage relationships of morphological and isozyme loci in chickpea (Cicer arietinum L.). Theor Appl Genet 86:417–426

    CAS  PubMed  Google Scholar 

  105. Khajuria YP, Saxena MS, Gaur R, Chattopadhyay D, Jain M, Parida SK, Bhatia S (2015) Development and integration of genome-wide polymorphic microsatellite markers onto a reference linkage map for constructing a high-density genetic map of chickpea. PLoS ONE 10:e0125583

    PubMed  PubMed Central  Google Scholar 

  106. Khatodia S, Kharb P, Batra P, Chowdhury VK (2014) Development and characterization of transgenic chickpea (Cicer arietinum L.) plants with cry1Ac gene using tissue culture independent protocol. Int J Adv Res 2:323–331

    Google Scholar 

  107. Kimurto PK, Towett BK, Mulwa RS, Njogu N, Jeptanui LJ, NVPR Rao G et al (2013) Evaluation of chickpea genotypes for resistance to Ascochyta blight (Ascochyta rabiei) disease in the dry highlands of Kenya. Phytopathol Mediterr 52:212–221

    Google Scholar 

  108. Knights EJ, Southwell RJ, Schwinghamer MW, Harden S (2008) Resistance to Phytopthoraa medicaginis Hansen and Maxwell in wild Cicer species and its use in breeding root resistance chickpea (C. arietinum L.). Aust J Agric Res 59:383–387

    Google Scholar 

  109. Koseoglu K, Adak A, Sari D, Sari H, Oncu Ceylan F, Toker C (2017) Transgressive segregations for yield criteria in reciprocal interspecific crosses between Cicer arietinum L. and C. reticulatum Ladiz. Euphytica 213:116

    Google Scholar 

  110. Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V et al (2015) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162

    PubMed  PubMed Central  Google Scholar 

  111. Kujur A, Upadhyaya HD, Bajaj D, Gowda CLL, Sharma S, Tyagi AK, Parida SK (2016) Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea. Sci Rep 6:27968

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kulwal PL, Thudi M, Varshney RK (2011) Genomics interventions in crop breeding for sustainable agriculture. In: Encyclopaedia of sustainability science and technology. Springer. https://doi.org/10.1007/978-1-4419-0851-3

  113. Kumar J, Van Rheenen HA (2000) A major gene for time of flowering in chickpea. J Hered 91:67–68

    CAS  PubMed  Google Scholar 

  114. Kumar KB, Mahalakshmi SL, Kumar SM, Devi BP (2014) Optimized Agrobacterium-mediated genetic transformation in chickpea (Cicer arietinum L.) Cultivar Swetha (ICCV-2). Trends Biosci 7:2237–2244

    Google Scholar 

  115. Kumar M, Chauhan AS, Kumar M, Yusuf MA, Sanyal A, Chauhan PS (2019a) Transcriptome sequencing of chickpea (Cicer arietinum L.) genotypes for identification of drought-responsive genes under drought stress condition. Plant Mol Biol Rep 17:186–203

    Google Scholar 

  116. Kumar S, Katna G, Sharma N (2019b) Mutation breeding in chickpea. Adv Plants Agric Res 9:355–362

    Google Scholar 

  117. Ladizinsky G (1998) Plant Evolution under domestication. Springer

  118. Ladizinsky G, Adler A (1975) Origin of chickpea as indicated by seed protein electrophoresis. Isr J Bot 24:183–189

    Google Scholar 

  119. Ladizinsky G, Adler A (1976) The Origin of chickpea Cicer arietinum L. Euphytica 25:211–217

    Google Scholar 

  120. Langridge P, Chalmers K (2005) The principle: identification and application of molecular markers. In: Horst L, Wenzel G (eds) Biotechnology in agriculture and forestry, molecular marker systems in plant breeding and crop improvement. Springer, pp. 3–21

  121. Lawo NC, Mahon RJ, Milner RJ, Sarmah BK, Higgins TJV, Romeis J (2008) Effectiveness of Bacillus thuringiensis-transgenic chickpeas and the entomopathogenic fungus Metarhizium anisopliae in controlling Helicoverpa armigera (Lepidoptera: Noctuidae). Appl Environ Microbiol 74:4381–4389

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Li H, Rodda M, Gnanasambandam A, Aftab M, Redden R, Hobson K, Rosewarne G et al (2015) Breeding for biotic stress resistance in chickpea: progress and prospects. Euphytica 204:257–288

    Google Scholar 

  123. Li Y, Ruperao P, Batley J, Edwards D, Davidson J, Hobson K, Sutton T (2017) Genome analysis identified novel candidate genes for ascochyta blight resistance in chickpea using whole genome re-sequencing data. Front Plant Sci 8:359

    PubMed  PubMed Central  Google Scholar 

  124. Lulsdorf M, Mallikarjuna N, Clarke H, Tar’an B (2005) Finding solutions for interspecific hybridization problems in chickpea (Cicer arietinum L.). 4th International food legumes research conference, 18–22 October, New Delhi, India, pp. 44

  125. Madrid E, Chen W, Rajesh PN, Castro P, Milla´n T, Gil J (2013) Allele-specific amplification for the detection of ascochyta blight resistance in chickpea. Euphytica 189:183–190

    CAS  Google Scholar 

  126. Malhotra RS (1998) Breeding chickpea for cold tolerance. In: 3rd European Conference on grain legumes, Opportunities for high quality, healthy and added-value crops to meet European demands, Valladolid, Spain, pp. 14–19

  127. Malhotra RS, Singh KB, Di Vito M, Greco N, Saxena MC (2002) Registration of ILC 10765 and ILC 10766 chickpea germplasm lines resistant to cyst nematode. Crop Sci 42:1756

    Google Scholar 

  128. Malhotra RS, Baum M, Udupa SM, Bayaa B, Kababbeh S, Khalaf G (2003) Ascochyta blight research in chickpea- present status and future prospects. In: Sharma RN, Srivastava GK, Rathore AL, Sharma ML, Khan MA (eds) Proceedings of the international chickpea conference chickpea research for the millennium, 20–22 January 2003, Raipur, Chhattisgarh, India, pp. 108–117

  129. Malhotra RS, Greco N, Di Vito M, Singh KB, Saxena MC, Hajjar S (2008) Registration of FLIP 2005-8 C and FLIP 2005-9 C, chickpea germplasm lines resistant to chickpea cyst nematode. J Plant Regist 2:65–66

    Google Scholar 

  130. Mallikarjuna N, Jadhav DR (2008) Techniques to produce hybrids between Cicer arietinum L. × Cicer pinnatifidum Jaub. Indian J Genet 68:398–405

    Google Scholar 

  131. Mallikarjuna N, Sharma HC, Upadhyaya HD (2007) Exploitation of wild relatives of pigeonpea and chickpea for resistance to Helicoverpa armigera. EJ SAT Agric Res Crop Improv 3(1):4–7

    Google Scholar 

  132. Mallikarjuna N, Coyne C, Cho S, Rynearson S, Rajesh PN, Jadhav DR, Muehlbauer FJ (2011) Cicer. In: Kole C (ed) Wild crop relatives: Genomic and breeding resources, legume crops and forages. Springer, pp. 63–82

  133. Mandal D, Sinharoy S (2019) A toolbox for nodule development studies in chickpea: a hairy-root transformation protocol and an efficient laboratory strain of Mesorhizobium sp. Mol Plant Microbe Interact 32:367–378

    PubMed  Google Scholar 

  134. Maphosa L, Richards MF, Norton SL, Nguyen GN (2020) Breeding for Abiotic Stress Adaptation in Chickpea (Cicer arietinum L.): A Comprehensive Review. Crop Breed Genet Genom 2:e200015

    Google Scholar 

  135. Maqbool MA, Aslam M, Ali H (2017) Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.). Plant Breed. https://doi.org/10.1111/pbr.12477

  136. Maxted N, Kell SP, Ford-Lloyd BV (2008) Crop wild relatives conservation and use: establishing the context. In: Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dulloo E, Turok J (eds) Crop wild relatives, conservation and use. CAB International, Wallingford, pp 3–30

    Google Scholar 

  137. Meena AK, Gurjar D, Kumhar BL (2017) Pre-breeding is a bridge between wild species and improved genotypes—a review. Chem Sci Rev Lett 6:1141–1151

    Google Scholar 

  138. Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives. Biodivers Conserv 13:663–684

    Google Scholar 

  139. Millán T, Rubio J, Iruela M, Daly K, Cubero JI, Gil J (2003) Markers associated with Ascochyta blight resistance in chickpea and their potential in marker-assisted selection. Field Crops Res 84:373–384

    Google Scholar 

  140. Millán T, Winter P, Jungling R, Gil J, Rubio J, Cho S, Cobos MJ, Iruela M, Rajesh PN, Tekeoglu M, Kahl G, Muehlbauer FJ (2010) A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175:175–189

    Google Scholar 

  141. Molina C, Rotter B, Horres R, Udupa S, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genom 9(1):553

    Google Scholar 

  142. Mpai T, Maseko ST (2018) Possible benefits and challenges associated with production of chickpea in inland South Africa. Acta Agric Scand B Soil Plant Sci 68:479–488

    Google Scholar 

  143. Muehlbauer FJ, Sarker A (2017) Economic importance of chickpea: production, value, band world trade. Springer, pp. 5–12

  144. Mugabe D, Coyne CJ, Piaskowski J, Zheng P, Ma Y, Landry E, McGee R, Main D, Vandemark G, Zhang H, Abbo S (2019) Quantitative Trait Loci for Cold Tolerance in Chickpea. Crop Sci 59:573–582

    CAS  Google Scholar 

  145. Muñoz N, Liu A, Kan L, Li M-W, Lam H-M (2017) Potential uses of wild germplasms of grain legumes for crop improvement. Int J Mol Sci 18:328

    PubMed Central  Google Scholar 

  146. Nayak SN, Zhu H, Varghese N, Datta S, Choi HK, Horres R et al (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Nguyen TT, Taylor PWJ, Redden RJ, Ford R (2004) Genetic diversity in Cicer using AFLP analysis. Plant Breed 123:173–179

    CAS  Google Scholar 

  148. Ortega R, Hecht VFG, Freeman JS, Rubio J, Carrasquilla-Garcia N, Mir RR, Penmetsa RV, Cook DR, Millan T, Weller JL (2019) Altered expression of an FT cluster underlies a major locus controlling domestication-related changes to chickpea phenology and growth habit. Front Plant Sci 10:824

    PubMed  PubMed Central  Google Scholar 

  149. Pande S, Ramgopal D, Kishore GK, Mallikarjuna N, Sharma M, Pathak M, Narayana Rao J (2006) Evaluation of wild Cicer species for resistance to Ascochyta blight and Botrytis gray mold in controlled environment at ICRISAT, Patancheru, India. Int Chickpea Pigeonpea Newsl 13:25–26

    Google Scholar 

  150. Pande S, Sharma M, Gaur PM, Gowda CLL (2010) Host plant resistance to Ascochyta blight of chickpea. Information bulletin no. 82, Project Report, ICRISAT

  151. Patil AS, Kamble GC (2014) Comparative protein profiling study in wild chickpea and its induced mutants. Experiment 18:1297–1303

    Google Scholar 

  152. Patrick JW, Stoddard FL (2010) Physiology of flowering and grain filling in faba bean. Field Crops Res 115:234–242

    Google Scholar 

  153. Paul PJ, Samineni S, Thudi M, Sajja SB, Rathore A, Das RR, Khan AW, Chaturvedi SK, Lavanya GR, Varshney RK, Gaur PM (2018) Molecular mapping of QTLs for heat tolerance in chickpea. Int J Mol Sci 19:2166

    PubMed Central  Google Scholar 

  154. Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB (2020) Global role of crop genomics in the face of climate change. Front Plant Sci 11:922

    PubMed  PubMed Central  Google Scholar 

  155. Pratap A, Prajapati U, Singh CM, Gupta S, Rathore M, Malviya N et al (2018) Potential, constraints and applications of in vitro methods in improving grain legumes. Plant Breed 137:235–249

    Google Scholar 

  156. PRRP (2008) Pesticide Risk Reduction Program, Agriculture and Agri-Food Canada, Ontario, Canada

  157. Pundir RPS, Mengesha MH (1995) Cross compatibility between chickpea and its wild relative Cicer echinospermum Davis. Euphytica 83:241–245

    Google Scholar 

  158. Rajesh PN, Sant VJ, Gupta VS, Muehlbauer FJ, Ranjekar PK (2003) Genetic relationships among annual and perennial wild species of Cicer using inter simple sequence repeat (ISSR) polymorphism. Euphytica 129:15–23

    CAS  Google Scholar 

  159. Rao NK, Reddy LJ, Bramel PJ (2003) Potential of wild species for genetic enhancement of some semi-arid food crops. Genet Resour Crop Evol 50:707–721

    Google Scholar 

  160. Reddy DS, Bhatnagar-Mathur P, Reddy PS, Sri Cindhuri K, Sivaji Ganesh A, Sharma KK (2016) Identification and validation of reference genes and their impact on normalized gene expression studies across cultivated and wild Cicer species. PLoS ONE 11:e0148451

    PubMed  PubMed Central  Google Scholar 

  161. Reen RA, Mumford MH, Thompson JP (2019) Novel sources of resistance to root-lesion nematode (Pratylenchus thornei) in a new collection of wild Cicer species (C. reticulatum and C. echinospermum) to improve resistance in cultivated chickpea (C. arietinum). Phytopathology 109:1270–1279

    PubMed  Google Scholar 

  162. Rehman AU, Malhotra RS, Bett K, Tar’an B, Bueckert R, Warkentin TD (2012) Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci 51:450–463

    Google Scholar 

  163. Robertson LD, Ocampo B, Singh KB (1997) Morphological variation in wild annual Cicer species in comparison with the cultigen. Euphytica 95:309–319

    Google Scholar 

  164. Rodda MS, Hobson KB, Forknall CR, Daniel RP, Fanning JP, Pounsett DD et al (2016) Highly heritable resistance to root-lesion nematode (Pratylenchus thornei) in Australian chickpea germplasm observed using an optimised glasshouse method and multi-environment trial analysis. Aust Plant Pathol 45:309–319

    CAS  Google Scholar 

  165. Roorkiwal M, Bharadwaj C, Barmukh R, Dixit GP, Thudi M, Gaur PM, Chaturvedi SK, Fikre A, Hamwieh A, Kumar S, Sachdeva S, Ojiewo CO, Tar’an B, Wordofa NG, Singh NP, Siddique KHM, Varshney RK (2020) Integrating genomics for chickpea improvement: achievements and opportunities. Theor Appl Genet 133:1703–1720

    PubMed  PubMed Central  Google Scholar 

  166. Roorkiwal M, Von Wettberg EJ, Upadhyaya HD, Warschefsky E, Rathore A et al (2014) Exploring germplasm diversity to understand the domestication process in Cicer spp. using SNP and DArT markers. PLoS ONE 9:e102016

    PubMed  PubMed Central  Google Scholar 

  167. Ryan JG (1997) A global perspective on pigeonpea and chickpea sustainable production systems: Present status and future potential. In: Asthana AN, Ali M (eds) Recent advances in pulses research. Indian Society of Pulses Research and Development, IIPR, Kanpur, India, pp 1–31

    Google Scholar 

  168. Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M, Gaur PM, Pande S, Singh S, Kaur L, Varshney RK (2013) Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica. https://doi.org/10.1007/s10681-013-0959-2

  169. Sachdeva S, Bharadwaj C, Singh RK, Jain PK, Patil BS, Roorkiwal M et al (2020) Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arietinum L.). PLoS ONE 15:e0234550

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Saeed A, Darvishzadeh R (2017) Association analysis of biotic and abiotic stresses resistance in chickpea (Cicer sp.) using AFLP markers. Biotechnol Biotechnol Equip 31:698–708

    CAS  Google Scholar 

  171. Sagi MS, Deokar AA, Tar’an B (2017) Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to ascochyta blight infection. Front Plant Sci 8:838

    PubMed  PubMed Central  Google Scholar 

  172. Sandhu JS (2004) Pers. Communication, Punjab Agricultural University, Ludhiana, Punjab, India

  173. Sandhu JS, Gupta SK, Singh G, Sharma YR, Bains TS, Kaur L, Kaur A (2006) Interspecific hybridization between Cicer arietinum L. and Cicer pinnatifidum Jaub. et. Spach for improvement of yield and other traits. In: 4th international food legumes research conference, Oct 18–22, 2005, Indian Society of Genetics and Plant Breeding, New Delhi, pp. 192

  174. Santra DK, Tekeoglu M, Ratnaparkhe M, Kaiser WJ, Muehlbauer FJ (2000) Identification and mapping of QTLs conferring resistance to Ascochyta blight in chickpea. Crop Sci 40:1606–1612

    CAS  Google Scholar 

  175. Sanyal I, Singh AK, Amla DV (2003) Agrobacterium tumefaciens-mediated transformation of chickpea (Cicer arietinum L.) using mature embryonic axes and cotyledonary nodes. Indian J Biotechnol 2:524–532

    CAS  Google Scholar 

  176. Sanyal I, Singh AK, Amala DV (2005) Agrobacterium tumefaciens-mediated transformation of chickpea (Cicer arietinum L.) using mature embryonic axes and cotyledonary nodes. Indian J Biotechnol 2:524–532

    Google Scholar 

  177. Saxena MS, Bajaj D, Kujur A, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014a) Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea. PLoS ONE 9(9):e107484

    PubMed  PubMed Central  Google Scholar 

  178. Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014b) An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res 21:695–710

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Saraf CS, Rupela OP, Hegde DM, Yadav RL, Shivkumar BG, Bhattarai S, Razzaque MA, Sattar MA (1998) Biological nitrogen fixation and residual effects of winter grain legumes in rice and wheat cropping systems of the Indo-Gangetic plain. In: Kumar JVDK, Johansen C, Rego TJ (eds) Residual effects of legumes in rice and wheat cropping systems of the Indo- Gangetic plain. Oxford/IBH Publishing, New Delhi, pp 14–30

    Google Scholar 

  180. Shah TM, Hassan M, Haq MA, Atta BM, Alam SS, Ali H (2005) Evaluation of Cicer species for resistance to Ascochyta Blight. Pak J Bot 37(2):431–438

    Google Scholar 

  181. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Shanko D, Jateni G, Debela A (2017) Effects of salinity om chickpea (Cicer arietinum L.) landraces during germination stage. J Biochem Mol Biol 3:9

    Google Scholar 

  183. Sharma HC (2004) A little help from wild: exploiting wild relatives of chickpea for resistance to Helicoverpa armigera. ICRISAT, Patancheru

    Google Scholar 

  184. Sharma S (2017) Prebreeding using wild species for genetic enhancement of grain legumes at ICRISAT. Crop Sci 57:1132–1144

    Google Scholar 

  185. Sharma HC, Pampapathy G, Lanka SK, Ridsdill-Smith TJ (2005) Antibiosis mechanism of resistance to pod borer, Helicoverpa armigera in wild relatives of chickpea. Euphytica 142:107–117

    Google Scholar 

  186. Sharma HC, Bhagwat MP, Pampapathy G, Sharma JP, Ridsdill-Smith TJ (2006) Perennial wild relatives of chickpea as potential sources of resistance to Helicoverpa armigera. Genet. Resour Crop Evol 53:131–138

    Google Scholar 

  187. Sharma HC, Jaba J, Vashisth S (2017) Distinguishing proof and utilization of resistance of insect pests in grain legumes: progress and limitations. In: Arora R, Sandhu S (eds) Breeding insect resistant crops for sustainable agriculture. Springer, pp. 131–170

  188. Sharma S, Upadhyaya HD, Roorkiwal M, Varshney RK, Laxmipathi Gowda CL (2013) Chickpea. In: Genetic and genomic resources of grain legume improvement. Elsevier, pp. 81–111

  189. Sharma M, Ghosh R, Tarafdar A, Rathore A, Chobe DR, Kumar AV, Gaur PM, Samineni S, Gupta O, Singh NP, Saxena DR, Saifulla M, Pithia MS, Ghante PH, Mahalinga DM, Upadhyay JB, Harer PN (2019) Exploring the genetic cipher of chickpea (Cicer arietinum L.) through identification and multi-environment validation of resistant sources against fusarium wilt (Fusarium oxysporum f. sp. ciceris). Front Sustain Food Syst 3:78

    Google Scholar 

  190. Sharma SB, Singh O, Pundir RPS, McDonald D (1993) Screening of Cicer species and chickpea genotypes for resistance to Meloidogyne javanica. Nematol Mediterr 21:165–167

    Google Scholar 

  191. Shin M-G, Bulyntsev SV, Chang PL, Balcha Korbu L, Carrasquila-Garcia N, Vishnyakova MA, Samsonova MG, Cook DR, Nuzhdin SV (2019) Multi-trait analysis of domestication genes in Cicer arietinumCicer reticulatum hybrids with a multidimensional approach: Modeling wide crosses for crop improvement. Plant Sci 285:122–131

    CAS  PubMed  Google Scholar 

  192. Siddique KHM, Brinsmead RB, Knight R, Knights EJ, Paull JG, Rose IA (2000) Adaptation of chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) to Australia. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Springer, pp. 289–303

  193. Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119

    CAS  Google Scholar 

  194. Singh KB (1997) Chickpea (Cicer arietinum L.). Field Crops Res 53:161–170

    Google Scholar 

  195. Singh KB, Ocampo B (1993) Interspecific hybridization in annual Cicer species. J Genet Breed 47:199–204

    Google Scholar 

  196. Singh KB, Ocampo B (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor Appl Genet 95:418–423

    Google Scholar 

  197. Singh NP, Pratap A (2016) Food legumes for nutritional security and health benefits. In: Singh U et al (eds) Biofortification of food crops. Springer, pp. 41–50

  198. Singh RP, Singh BD (1989) Recovery of rare interspecific hybrids of gram Cicer arietinum × C. cuneatum L. through tissue culture. Curr Sci 58:874–876

    Google Scholar 

  199. Singh KB, Di Vito M, Greco N, Saxena MC (1989) Reaction of wild Cicer spp. lines to Heterodera ciceri. Nematol Mediterr 17:113–114

    Google Scholar 

  200. Singh KB, Malhotra RS, Saxena MC (1990) Sources for tolerance to cold in Cicer species. Crop Sci 30:1136–1138

    Google Scholar 

  201. Singh KB, Malhotra RS, Saxena MC (1995) Additional sources of tolerance to cold in cultivated and wild Cicer species. Crop Sci 35:1491–1497

    Google Scholar 

  202. Singh KB, Di Vito M, Greco N, Saxena MC (1996) Registration of ILWC292, a chickpea cyst nematode resistant germplasm of Cicer reticulatum Ladiz. Crop Sci 36:1421–1422

    Google Scholar 

  203. Singh NP, Singh A, Asthana AN, Singh A (1999) Studies on inter-specific crossability barriers in chickpea. Indian J Pulses Res 12:13–19

    Google Scholar 

  204. Singh S, Gumber RK, Joshi N, Singh K (2005a) Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breed 124:477–480

    Google Scholar 

  205. Singh S, Gumber RK, Joshi N, Singh K (2005b) Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breed 124:477–480

    Google Scholar 

  206. Singh R, Sharma P, Varshney RK, Sharma SK, Singh NK (2008a) Chickpea improvement: role of wild species and genetic markers. Biotechnol Genet Eng Rev 25:267–314

    CAS  PubMed  Google Scholar 

  207. Singh S, Gumber R, Virdi K (2008b) Inheritance of growth habit in Cicer: Evidences for epistatic effect of C. reticulatum gene over C. arietinum. In: Kharkwal MC (ed) Proceedings of the 4th international food legumes research conference, New Delhi, India, pp. 146 – 51

  208. Singh TP, Deshmukh PS, Kumar P (2008c) Relationship between physiological traits in chickpea (Cicer arietinum L.) under rainfed condition. Indian J Plant Physiol 13:411–413

    Google Scholar 

  209. Singh AK, Singh RV, Bharti RC, Chandra N, Kumar C, Dimreee SK (2010) Introduction of wild and weedy relatives of crop plants in India. Environ Ecol 28:1715–1721

    Google Scholar 

  210. Singh I, Singh RP, Singh S, Sandhu JS (2012a) Introgression of productivity genes from wild to cultivated Cicer. In: Sandhu SK, Sidhu N, Rang A (eds) International conference on sustainable agriculture for food and livelihood security, Crop Improvement Society of India, Ludhiana, India, pp. 155–156

  211. Singh RP, Singh I, Singh S, Sandhu JS (2012b) Assessment of genetic diversity among interspecific derivatives of C. arietinum with C. pinnatifidum.. J Food Legu 25(2):150–152

    Google Scholar 

  212. Singh I, Sandhu JS, Gupta SK, Singh S (2013) Introgression of productivity and other desirable traits from rice bean (Vigna umbellata) into black gram (Vigna mungo). Plant Breed 132:401–406

    CAS  Google Scholar 

  213. Singh M, Bisht IS, Dutta M, Kumar K, Basandrai AK, Kaur L, Sirari A, Khan Z et al (2014a) Characterization and evaluation of wild annual Cicer species for agro-morphological traits and major biotic stresses under Northwestern Indian conditions. Crop Sci 54:229–239

    Google Scholar 

  214. Singh S, Singh I, Kapoor K, Gaur PM, Chaturvedi SK, Singh NP, Sandhu JS (2014b) Chickpea. In: Singh M et al (eds) Broadening the genetic base of grain legumes. Springer, pp. 51–73

  215. Singh M, Kumar K, Bisht IS, Dutta M, Rana MK, Rana JC, Bansal KC, Sarker A (2015) Exploitation of wild annual Cicer species for widening the gene pool of chickpea cultivars. Plant Breed 134:186–192

    Google Scholar 

  216. Singh M, Bhardwaj C, Singh S, Panatu S, Chaturvedi SK, Rana JC, Rizvi AH, Kumar N, Sarker A (2016) Chickpea genetic resources and its utilization in India: current status and future prospects. Indian J Genet Plant Breed 76:515–529

    Google Scholar 

  217. Singh U, Khemka N, Rajkumar MS, Garg R, Jain M (2017) PLncPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea. Nucl Acids Res 45:e183

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Singh M, Rani S, Malhotra N, Katna G, Sarker A (2018) Transgressive segregations for agronomic improvement using interspecific crosses between C. arietinum L. × C. reticulatum Ladiz. and C. arietinum L. × C. echinospermum Davis species. PLoS ONE 13(9):e0203082

  219. Smýkal P, Coyne CJ, Ambrose MJ, Maxted N, Schaefer H, Blair MW et al (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci 34:43–104

    Google Scholar 

  220. Srivastava R, Bajaj D, Malik A, Singh M, Parida SK (2016a) Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea. Sci Rep 6:33616

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Srivastava R, Singh M, Bajaj D, Parida SK (2016b) A high-resolution InDel (insertion–deletion) markers-anchored consensus genetic map identifies major QTLs governing pod number and seed yield in chickpea. Front Plant Sci 7:1362

    PubMed  PubMed Central  Google Scholar 

  222. Stalker HT (1980) Utilization of wild species for crop improvement. Adv Agron 33:111–147

    Google Scholar 

  223. Stevenson PC, Haware MP (1999) Maackiain in Cicer bijugum Rech. F. associated with resistance to Botrytis gray mold. Biochem Syst Ecol 27:761–767

    CAS  Google Scholar 

  224. Stevenson PC, Veitch NC (1996) Isoflavones from the roots of Cicer judaicum. Phytochemistry 43:695–700

    CAS  Google Scholar 

  225. Stevenson PC, Veitch NC (1998) A 2-arylbenzofuran from roots of Cicer bijugum associated with Fusarium wilt resistance. Phytochemistry 48:947–951

    CAS  Google Scholar 

  226. Stolton S, Maxted N, Ford-Lloyd BV, Kell SP, Dudley N (2006) Food stores: using protected areas to secure crop genetic diversity. WWF arguments for protection series. WWF World Wide Fund for Nature, Gland, pp 1–135

    Google Scholar 

  227. Sudupak MA, Akkaya MS, Kence A (2002) Analysis of genetic relationships among perennial and annual Cicer species growing in Turkey using RAPD markers. Theor Appl Genet 105:1220–1228

    CAS  PubMed  Google Scholar 

  228. Sudupak MA, Akkaya MS, Kence A (2004) Genetic relationships among perennial and annual Cicer species growing in Turkey assessed by AFLP fingerprinting. Theor Appl Genet 108:937–944

    CAS  PubMed  Google Scholar 

  229. Summerfield RJ, Hadley P, Roberts EH, Minchin FR, Rawsthrone S (1984) Sensitivity of chickpea (Cicer arietinum L.) to hot temperatures during the reproductive period. Exp Agric 20:77–93

    Google Scholar 

  230. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    CAS  PubMed  Google Scholar 

  231. Tarafdar A, Rani TS, Chandran USS, Ghosh R, Chobe DR, Sharma M (2018) Exploring combined effect of abiotic (soil moisture) and biotic (Sclerotium rolfsii Sacc.) stress on collar rot development in chickpea. Front Plant Sci 9:1154

    PubMed  PubMed Central  Google Scholar 

  232. Tayyar RI, Waines JG (1996) Genetic relationships among annual species of Cicer (Fabaceae) using isozyme variation. Theor Appl Genet 92:245–254

    CAS  PubMed  Google Scholar 

  233. Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged microsatellite sites to chickpea genetic map. Theor Appl Genet 105:847–854

    CAS  PubMed  Google Scholar 

  234. Tekeoglu M, Isuk M, Muehlbauer FJ (2004) QTL analysis of ascochyta blight resistance in chickpea. Turk J Agric Forecast 28:183–187

    CAS  Google Scholar 

  235. Tewari-Singh N, Sen J, Kiesecker H, Reddy VS, Jacobsen HJ, Mukherjee SG (2004) Use of a herbicide or lysine plus threonine for non antibiotic selection of transgenic chickpea. Plant Cell Rep 22:576–583

    CAS  PubMed  Google Scholar 

  236. Thompson JP, Reen AR, Clewett TG, Sheedy JG, Kelly AM, Gogel BJ, Knights EJ (2011) Hybridization of Australian chickpea cultivars with wild Cicer spp. increases resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus). Australasian Plant Pathol 40:601–611

    Google Scholar 

  237. Toker C (2005) Preliminary screening and selection for cold tolerance in annual wild Cicer species. Genet Resour Crop Evol 52:1–5

    Google Scholar 

  238. Toker C, Canci H, Yildirim T (2007) Evaluation of perennial wild Cicer species for drought resistance. Genet Resour Crop Evol 54:1781–1786

    Google Scholar 

  239. Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM, Penmetsa RV, Thirunavukkarasu N, Gudipati S, Gaur PM, Kulwal PL, Upadhyaya HD, KaviKishor PB, Winter P, Kahl G, Town CD, Kilian A, Cook DR, Varshney RK (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1291 marker loci for chickpea (Cicer arietinum L.). PLoS ONE 6(11):e27275

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Upadhyaya HD (2008) Crop Germplasm and wild relatives: A source of novel variation for crop improvement. Korean J Crop Sci 53:12–17

    Google Scholar 

  241. Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer TD, Turner NC (2012) Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol Breed 30:9–21

    Google Scholar 

  242. van der Maesen LJG (1987) Origin, history and taxonomy of chickpea. In: Saxena MC, Singh KB (eds) The Chickpea. CAB International, Cambridge, pp 11–34

    Google Scholar 

  243. van der Maesen LJG, Pundir RPS (1984) Availability and use of wild Cicer germplasm. FAO/IBPGR Plant Genet Resour Newsl 57:19–24

    Google Scholar 

  244. van Dorrestein B, Baum M, Malhotra RS (1998) Interspecific hybridization between cultivated chickpea (Cicer arietinum L.) and the wild annual species C. judaicum, C. pinnatifidum. In: Proceedings of 3rd European conference on grain legumes, 14–19 November 1998, Valladolid, Spain, pp 362–363

  245. Varshney RK, Graner A, Sorrells ME (2005a) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    CAS  PubMed  Google Scholar 

  246. Varshney RK, Graner A, Sorrells ME (2005b) Genomic-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    CAS  PubMed  Google Scholar 

  247. Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KHM, Town CD, Hoisington DA (2009) A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genom 10:523

    Google Scholar 

  248. Varshney RK, Kudapa H, Roorkiwal M, Thudi M, Pandey MK, Saxena RK et al (2012) Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. J Biosci 37:811–820

    CAS  PubMed  Google Scholar 

  249. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    CAS  PubMed  Google Scholar 

  250. Varshney RK, Thudi M, Roorkiwal M, He W, Upadhyaya HD, Yang W, Bajaj P, Cubry P, Rathore A, Jian J et al (2019) Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat Genet 51:857–864

    CAS  PubMed  Google Scholar 

  251. Vavilov NI (1926) Studies on the origin of cultivated plants. Bull Appl Bot Genet Plant Breed 16:1–248

    Google Scholar 

  252. Vavilov NI (1951) The Origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366

    Google Scholar 

  253. Velu G, Singh RP (2013) Phenotyping in wheat breeding. In: Panguluri SK, Kumar AA (eds) Phenotyping for plant breeding: Applications of phenotyping methods for crop. Springer, pp. 41–72

  254. Verma MM, Sandhu JS, Ravi (1995) Characterization of the interspecific cross Cicer arietinum × C. judaicum (Boiss). Plant Breed 114:259–266

    Google Scholar 

  255. Verma M, Kumar V, Patel RK, Garg R, Jain M (2015) CTDB: an integrated chickpea transcriptome database for functional and applied genomics. PLoS ONE 10:e0136880

    PubMed  PubMed Central  Google Scholar 

  256. von Wettberg EJB, Chang PL, Ba¸sdemir F, Carrasquila-Garcia N, Korbu LB, Moenga SM et al (2018) Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nat Commun 9:649

    Google Scholar 

  257. Winter P, Pfaff T, Udupa SM, Huttel B, Sharma PC et al (1999) Characterization and mapping of sequence-tagged Microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Gen Genet 262:90–101

    CAS  PubMed  Google Scholar 

  258. Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, McCouch SR, Tanksley SD (1996) Genes from wild rice improve yield. Nature 384:223–224

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Ministry of Agriculture and Farmer’s welfare, Government of India for providing grant-in aid for research project on “Pre-breeding and genetic enhancement for breaking yield barriers in chickpea” to the first author of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohar Singh.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Malhotra, N. & Singh, K. Broadening the genetic base of cultivated chickpea following introgression of wild Cicer species-progress, constraints and prospects. Genet Resour Crop Evol 68, 2181–2205 (2021). https://doi.org/10.1007/s10722-021-01173-w

Download citation

Keywords

  • Crop wild relatives
  • Cicer
  • Germplasm
  • Genomics
  • Characterization
  • Pre‐breeding