Genetic diversity is enhanced in Wild × Cultivated hybrids of sugarbeet (Beta vulgaris L.) despite multiple selection cycles for cultivated traits

Abstract

Genetic diversity is enhanced by introgressing wild germplasm into breeding lines and populations. Such introgression, however, commonly introduces wild traits that must be removed by backcrossing and selection before lines are useful for elite breeding programs. Selection against wild characteristics is expected to reduce genetic diversity in introgressed lines. However, the effect of such selection on genetic diversity has not been evaluated for sugarbeet (Beta vulgaris L.). Therefore, genetic diversity was determined for 24 germplasm releases derived from cultivated sugarbeet × wild sea beet [B. vulgaris subsp. maritima (L.) Arcang.] crosses after multiple selection cycles for cultivated traits and compared to the diversity of their wild parents and cultivated sugarbeet lines using simple sequence repeat (SSR) analysis. Diversity in germplasm derived from wild × cultivated hybrids was intermediate of wild and cultivated lines in observed heterozygosity, inbreeding coefficient, and the number of alleles, private alleles, and low frequency alleles. Principal component and neighbor joining analyses demonstrated that wild × cultivated-derived germplasm shared greater similarity with cultivated germplasm than to their wild parents, while STRUCTURE analysis indicated that wild × cultivated-derived germplasm was an admixture of wild and cultivated-derived germplasm. Diversity, therefore, was enhanced in germplasm derived from wild × cultivated hybrids, although selection for cultivated traits reduced the diversity added by introgression with wild accessions. Nevertheless, the enhanced genetic diversity in germplasm releases derived from wild × cultivated hybrids identify these lines as a resource for unique genes and alleles to improve crop productivity, adaptation, and disease tolerance in sugarbeet.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Biancardi E, Panella LW, Lewellen RT (2012) Beta maritima: the origin of beets. Springer, New York

    Google Scholar 

  2. Burgarella C, Barnaud A, Kane NA, Jankowski F, Scarcelli N, Billot C, Vigouroux Y, Berthouly-Salazar C (2019) Adaptive introgression: an untapped evolutionary mechanism for crop adaptation. Front Plant Sci 10:4

    PubMed  PubMed Central  Article  Google Scholar 

  3. Campbell LG (1989) Beta vulgaris NC-7 collection as a source of high sucrose germplasm. J Sugar Beet Res 26:1–9

    Article  Google Scholar 

  4. Campbell LG (1990) Registration of F1010 sugarbeet germplasm. Crop Sci 30:429–430

    Article  Google Scholar 

  5. Campbell LG (2010) Registration of seven sugarbeet germplasms selected from crosses between cultivated and wild Beta species. J Plant Regist 4:149–154

    Article  Google Scholar 

  6. Campbell LG (2015) F1030, F1031, and F1032 sugarbeet germplasms selected from crosses between L19 and three cultivated/wild germplasms. J Plant Regist 9:382–387

    Article  Google Scholar 

  7. Campbell LG, Anderson AW, Dregseth RJ (2000) Registration of F1015 and F1016 sugarbeet germplasms with resistance to the sugarbeet root maggot. Crop Sci 40:867–868

    Article  Google Scholar 

  8. Campbell LG, Fugate KK (2017) Sugarbeet germplasm lines selected from crosses between cultivated sugarbeet and wild Beta vulgaris subsp. maritima from the United Kingdom. J Sugar Beet Res 54:20–34

    Google Scholar 

  9. Campbell LG, Fugate KK (2018) Sugarbeet germplasm lines selected from crosses between wild Beta vulgaris subsp. maritima from France, Belgium, and Denmark and cultivated sugarbeet. J Sugar Beet Res 55:3–20

    Google Scholar 

  10. Capistrano-Gossmann GG, Ries D, Holtgräwe D, Minoche A, Kraft T, Frerichmann SLM, Soerensen TR et al (2017) Crop wild relative populations of Beta vulgaris allow direct mapping of agronomically important genes. Nat Commun 8:15708

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Evol Syst 34:213–237

    Article  Google Scholar 

  12. Čurċić Z, Tašdki-Ajduković K, Nagl N (2017) Relationship between hybrid performance and genetic variation in self-fertile and self-sterile sugar beet pollinators as estimated by SSR markers. Euphytica 213:108

    Article  CAS  Google Scholar 

  13. Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082

    Article  Google Scholar 

  14. Doney DL (1993) Broadening the genetic base of sugarbeet. J Sugar Beet Res 30:209–219

    Article  Google Scholar 

  15. Doney DL (1995) Registration of four sugarbeet germplasms: y317, y318, y322, and y387. Crop Sci 35:947

    Article  Google Scholar 

  16. Doney DL, Theurer JC (1984) Potential of breeding for ethanol fuel in sugarbeet. Crop Sci 24:255–257

    CAS  Article  Google Scholar 

  17. Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  18. Draycott AP (2006) Sugar Beet. Blackwell Publishing, Oxford

    Google Scholar 

  19. Driessen S, Pohl M, Bartsch D (2001) RAPD-PCR analysis of the genetic origin of sea beet (Beta vulgaris ssp. maritima) at Germany’s Baltic Sea coast. Basic Appl Ecol 2:341–349

    CAS  Article  Google Scholar 

  20. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  21. Eltaher S, Sallam A, Belamkar V, Emara HA, Nower AA, Salem KFM, Poland J, Baenziger PS (2018) Genetic diversity and population structure of F3:6 Nebraska winter wheat genotypes using genotyping-by-sequencing. Front Genet 9:76

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Esquinas-Alcázar J (2005) Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat Rev 6:946–943

    Article  Google Scholar 

  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  Article  Google Scholar 

  24. Fénart S, Amaud J, De Cauwer I, Cuguen J (2008) Nuclear and cytoplasmic genetic diversity in weed beet and sugarbeet accessions compared to wild relatives: new insights into the genetic relationship within the Beta vulgaris complex species. Theor Appl Genet 116:1063–1077

    PubMed  Article  Google Scholar 

  25. Francis SA (2006) Development of sugar beet. In: Draycott AP (ed) Sugar beet. Blackwell, Oxford, pp 9–29

    Google Scholar 

  26. Frese LB, Desprez B, Ziegler D (2001) Potential of genetic resources and breeding strategies for base-broadening in Beta. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CABI Publishing, Oxon, pp 295–309

    Google Scholar 

  27. Fu Y-B (2015) Understanding crop genetic diversity under modern plant breeding. Theor Appl Genet 128:2131–2142

    PubMed  PubMed Central  Article  Google Scholar 

  28. Fugate KK, Campbell LG, Covarrubias-Pazaran G, Rodriguez-Bonilla L, Zalapa J (2019) Genetic differentiation and diversity of sugarbeet germplasm resistant to the sugarbeet root maggot. Plant Genet Resour 17:514–521

    CAS  Article  Google Scholar 

  29. Fugate KK, Fajardo D, Schlautman B, Ferrareze JP, Bolton MD, Campbell LG, Wiesman E, Zalapa JE (2014) Generation and characterization of a sugarbeet transcriptome and transcript-based SSR markers. Plant Genome 7:1–13

    Article  Google Scholar 

  30. Hao M, Zhang L, Ning S, Huang L, Yuan Z, Wu B, Yan Z, Dai S, Jiang B, Zheng Y, Liu D (2020) The resurgence of introgression breeding, as exemplified in wheat improvement. Front Plant Sci 11:252

    PubMed  PubMed Central  Article  Google Scholar 

  31. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    PubMed  PubMed Central  Article  Google Scholar 

  33. Lewellen RT (1992) Use of plant introductions to improve populations and hybrids of sugarbeet. Use of plant introductions in cultivar development, part 2. Crop Science Society of America, Madison, pp 117–135

    Google Scholar 

  34. Lewellen RT, Whitney ED, Skoyen IO (1985) Registration of C37 sugarbeet parental line. Crop Sci 25:375

    Article  Google Scholar 

  35. Leys M, Petit EJ, El-Bahloul Y, Liso C, Fournet S, Arnaud J-F (2014) Spatial genetic structure in Beta vulgaris subsp. maritima and Beta macrocarpa reveals the effect of contrasting mating system, influence of marine currents, and footprints of postglacial recolonization routes. Ecol Evol 4:1828–1852

    PubMed  PubMed Central  Article  Google Scholar 

  36. Loel J, Marlander B, Hoffmann C (2014) Assessment of breeding progress in sugar beet by testing old and new varieties under greenhouse and field conditions. Eur J Agron 52:146–156

    Article  Google Scholar 

  37. Luikart G, Allendorf FW, Cornuet J-M, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Heredity 89:238–247

    CAS  Article  Google Scholar 

  38. Märländer B, Lange T, Wolkow A (2011) Dispersal principles of sugar beet from seed to sugar with particular relation to genetically modified varieties. J Kulturpflanzen 63:349–373

    Google Scholar 

  39. McGrath JM, Derrico CA, Yu Y (1999) Genetic diversity in selected historical US sugarbeet germplasm and Beta vulgaris ssp. maritima. Theor Appl Genet 98:968–976

    Article  Google Scholar 

  40. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ober ES, Luterbacher MC (2002) Genotypic variation for drought tolerance in Beta vulgaris. Ann Bot 89:917–924

    PubMed  PubMed Central  Article  Google Scholar 

  42. Panella L, Kaffka SR, Lewellen RT, McGrath JM, Metzger MS, Strausbaugh CA (2014) Sugarbeet. In: Smith S, Diers B, Specht J, Carver B (eds) Yield gains in major US field crops. CSSA Special Publication, Madison, pp 357–395

    Google Scholar 

  43. Panella L, Lewellen RT (2007) Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica 154:383–400

    CAS  Article  Google Scholar 

  44. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  45. Poehlman JM (1959) Breeding field crops. Henry Holt, New York

    Google Scholar 

  46. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  47. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  48. Richards CM, Reeves PA, Fenwick AL, Panella L (2014) Genetic structure and gene flow in Beta vulgaris subspecies maritima along the Atlantic coast of France. Genet Resour Crop Evol 61:651–662

    Article  Google Scholar 

  49. Saccomani M, Stevanato P, Trebbi D, McGrath JM, Biancardi E (2009) Molecular and morpho-physiological characterization of sea, ruderal and cultivated beets. Euphytica 169:19–29

    Article  Google Scholar 

  50. Stevanato P, De Biaggi M, Skaracis GN, Colombo M, Mandolino G, Biancardi E (2001) The sea beet (Beta vulgaris L. ssp. maritima) of the adriatic coast as source of resistance for sugar beet. Sugar Tech 3:77–82

    Article  Google Scholar 

  51. Viard F, Bernard J, Desplannque B (2002) Crop weed interactions in the complex at a local scale: allelic diversity and gene flow within sugar beet fields. Theor Appl Genet 104:688–697

    CAS  PubMed  Article  Google Scholar 

  52. Vincent H, Amri A, Castañeda-Álvarez NP, Dempewolf H, Dulloo E, Guarino L, Hole D, Mba C, Toledo A, Maxted N (2019) Modeling of crop wild relative species identifies areas globally for in situ conservation. Commun Biol 2:136

    PubMed  PubMed Central  Article  Google Scholar 

  53. Wickman H (2011) ggplot2. Wiley Interdiscip. Rev Comput Stat 3:180–185

    Google Scholar 

  54. Winner C (1993) History of the crop. In: Cooke DA, Scott RK (eds) The sugarbeet crop. Chapman and Hall, London, pp 1–36

    Google Scholar 

  55. Zhang H, Mittal N, Leamy LJ, Barazini O, Song B-H (2017) Back into the wild-apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl 10:5–24

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors thank John Eide for technical assistance and the Beet Sugar Development Foundation for partial financial support of this research. Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture (USDA). USDA is an equal opportunity provider and employer.

Funding

This research was partially funded by a grant from the Beet Sugar Development Foundation, Denver, CO, USA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karen K. Fugate.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data disposition

Data is available in the supplemental files, Online Resource 1, Online Resource 2, and Online Resource 3.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fugate, K.K., Campbell, L.G., Covarrubias-Pazaran, G. et al. Genetic diversity is enhanced in Wild × Cultivated hybrids of sugarbeet (Beta vulgaris L.) despite multiple selection cycles for cultivated traits. Genet Resour Crop Evol (2021). https://doi.org/10.1007/s10722-021-01149-w

Download citation

Keywords

  • Beta vulgaris L.
  • Beta vulgaris subsp. maritima
  • Introgression
  • Simple sequence repeat
  • SSR