Skip to main content

Berberis burruyacuensis O. R. Dantur, S. Radice, E. Giordani, A. Papini sp. nov. (Berberidaceae): a new species

Abstract

A new species of Berberis L. from the region of Tucumán (Argentina), locally known as “sacha mikuna”, was described as Berberis burruyacuensis. The phylogenetic position was evaluated with ITS DNA sequences, particularly with respect to Berberis mikuna Job and other Berberis species of West-South America. The autonomy of the species, beyond the observed morphological and phenological traits, was confirmed through high maximum likelihood bootstrap values and bayesian support. Moreover, a 3 nucleotides insertion, together with two transversions and one transition, characterizes B. burruyacuensis ITS1 DNA region with respect to the rest of the species of the genus. B. burruyacuensis clustered in a very interesting position, that is as an outgroup to the rest of the South American species of Berberis. This position may suggest for this species the maintenance of relatively plesiomorphic characters with respect to the rest of the clade.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Adhikari B, Milne R, Pennington RT, Särkinen T, Pendry CA (2015) Systematics and biogeography of Berberis s.l. inferred from nuclear ITS and chloroplast ndhF gene sequences. Taxon 64(1):39–48

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Arambarri AM, Freire SE, Colares MN, Bayón ND, Novoa MC, Monti C, Stenglein SA (2006) Leaf anatomy of Medicinal Shrubs and Trees from Gallery Forests of the Paranaense Province (Argentina). Part 1. Bol Soc Argent Bot 41(3–4):233–268

    Google Scholar 

  • Bottini MCJ, Greizertein EJ, Poggio L (1999) Poliploidy levels and their relationships with the rainfall in several populations of Patagonian species of Berberis L. Caryologia 52(1–2):75–80

    Article  Google Scholar 

  • Bottini MCJ, Greizertein EJ, Aulicino MB, Poggio L (2000) Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae). Ann Bot 86:565–573

    CAS  Article  Google Scholar 

  • Bottini MCJ, De Bustos A, Sanso AM, Jouve N, Poggio L (2007) Relationships in Patagonian species of Berberis (Berberidaceae) based on the characterization of rDNA internal transcribed spacer sequences. Bot J Linn Soc 153:321–328

    Article  Google Scholar 

  • Bressan EA, Rossi ML, Gerald LT, Figueira A (2014) Extraction of high-quality DNA from ethanol-preserved tropical plant tissues. BMC Res Not 7(1):268

    Article  Google Scholar 

  • Cabildo M, Acosta A, Díaz S (1990) The vascular flora and vegetation of granitic outcrops in the upper Córdoba mountains, Argentina. Phytocoenologia 19(2):267–281

    Article  Google Scholar 

  • Ceribelli A (2018) B. mikuna Job, specie endemica argentina potenziale fonte alimentare di antiossidanti. Dissertation, University of Florence

  • Corpet F (1988) Multaline “Multiple sequence alignment with hierarchical clustering” 1988. Nucl Acids Res 16(22):10881–10890

    CAS  Article  Google Scholar 

  • DAGRI (2020) Progetto WarmiPura. https://www.dagri.unifi.it/vp-477-warmi-pura-ita.html. Accessed 26 April 2020

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:1115

    Google Scholar 

  • Job MM (1953) Nueva Contribución al Estudio de los Berberis del Noroeste Argentino. Revista del Museo de La Plata 8(34):169–178

    Google Scholar 

  • Kim YD, Kim SH, Landrum LR (2004) Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae). J Plant Res 117:175–182

    CAS  Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    CAS  Article  Google Scholar 

  • Landrum L (1999) Revision of Berberis (Berberidaceae) in Chile and Adjacent Southern Argentina. Ann Missouri Bot Gard 86:793–834. https://doi.org/10.2307/2666170

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    CAS  Article  Google Scholar 

  • Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925

    CAS  Article  Google Scholar 

  • Lewke Bandara N, Papini A, Mosti S, Brown T, Smith L (2013) A phylogeny of Onobrychis and its relationships with allied genera of Hedysareae. Turk J Bot 37(6):981–992

    Article  Google Scholar 

  • Maddison WP, Maddison RD (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75 http://mesquiteproject.org

  • Mati E (2019) Vitalità e germinabilità in vitro del polline di Berberis mikuna, una specie autoctona argentina. Dissertation, University of Florence

  • Murray MG, Pitas JW (1996) Plant DNA from alcohol-preserved samples. Plant Mol Biol Rep 14(3):261–265

    CAS  Article  Google Scholar 

  • Nylander JAA (2004) Mr Modeltest, version 1.0b. Department of Systematic Zoology, EBC, Uppsala University, Uppsala, Sweden

  • Orsi MC (1984) Berberidaceae. In: Correa MN (ed) Flora Patagónica. INTA, Buenos Aires, pp 325–348

    Google Scholar 

  • Palchetti E, Biricolti S, Gori M, Rota Nodari G, Gandolfi N, Papini A (2018) Two new Malagasy species of genus Piper L. (Piperaceae), Piper malgassicum and Piper tsarasotrae, and their phylogenetic position. Turk J Bot 42:610–622. https://doi.org/10.3906/bot-1712-2

    CAS  Article  Google Scholar 

  • Papini A, Trippanera GB, Maggini F, Filigheddu R, Biondi E (2004) New insights in Salicornia L. and allied genera (Chenopodiaceae) inferred from nrDNA sequence data. Plant Biosyst 138(3):215–223

    Article  Google Scholar 

  • Papini A, Banci F, Nardi E (2007) Molecular evidence of polyphyletism in the plant genus Carum L. (Apiaceae). Genet Mol Biol 30:475–482

    CAS  Article  Google Scholar 

  • Papini A, Simeone MC, Bellarosa R, Spada F, Schirone B (2011) Quercus Macranthera Fisch. & Mey. Ex Hohen. and Quercus Iberica M. Bieb.: taxonomic definition and systematic relationships with European oaks inferred from nuclear Internal Transcribed Spacer (ITS) data. Plant Biosyst 145:37–49

    Article  Google Scholar 

  • Pastrana L (2016) Volver a lo nuestro. Rescate y preservación de las técnicas ancestrales sobre tintes naturales. Ediciones del Bicentenario, San Miguel de Tucumán, Argentina

  • Pedrazzani S, Scali E (2019) WarmiPura: recovery of ancestral techniques for dyeing wool and natural fibers in North-West Argentina. University and International Cooperation for Safety, Environment and Sustainable Development. Citizenship and Common Goods. Book of Abstracts, 259

  • Polop JJ (1989) Distribution and ecological observations of wild rodents in Pampa de Achala, Córdoba, Argentina. Stud Neotrop Fauna Environ 24(2):53–59

    Article  Google Scholar 

  • Radice S, Arena ME, Alonso M, Guastavino N, Dantur O (2018) Los Berberis nativos del NOA. Revista de Investigaciones Científicas de la Universidad de Morón 1/2. 102

  • Radice S, Arena ME, Giordani E, Pedrazzani S (2020a) La mikuna, una especie nativa del NOA como producto no maderable de las Yungas de Tucumán. Argentina Forestal. https://www.argentinaforestal.com/2020/07/29/la-mikuna-una-especie-nativa-del-noa-como-producto-no-maderable-de-las-yungas-de-tucuman/

  • Radice S, Galati B, Zarlavsky G, Arena ME (2020b) Histological changes of Berberis mikuna pollen grains in relation to viability and germinability. Flora. https://doi.org/10.1016/j.flora.2020.151623

    Article  Google Scholar 

  • Rambaut A, Drummond A (2010) FigTree v1.3.1. http://tree.bio.ed.ac.uk/software/figtree/. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom

  • Ronquist F, Teslenko M, Van Der Mark P, Ayaccesseres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  Google Scholar 

  • Roy S, Tyagi A, Shukla V, Kumar A, Singh UM, Chaudhary LB, Datt B, Bag SK, Singh PK, Nair NK, Husain T, Tuli R (2010) Universal plant DNA barcode loci may not work in complex groups: a case study with Indian Berberis species. PLoS ONE 5:e13674

    Article  Google Scholar 

  • Simeone MC, Grimm GW, Papini A, Vessella F, Cardoni S, Tordoni E, Piredda R, Franc A, Denk T (2016) Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ. https://doi.org/10.7717/peerj.1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    CAS  Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    CAS  Article  Google Scholar 

  • Swofford DL (1998) PAUP* 4.1. Phylogenetic analysis using parsimony. Test version. Sinauer Associates, Sunderland (MA)

  • Trauth Nare AE (2001) Systematics and biogeography of the Berberis commutata complex (Berberidaceae) of South America. Master thesis. Arizona State University

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, Thomas J (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, p 315

    Google Scholar 

  • Young ND, Healy J (2003) GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinform 4:6

    Article  Google Scholar 

  • Zuloaga FO, Morrone O, Belgrano MJ (2008) Catalogue of the vascular plants of the southern cone (Argentina, southern Brazil, Chile, Paraguay and Uruguay). Volume 2: Dicotyledoneae: Acanthaceae-Fabaceae (Abarema-Schizolobium). Missouri Botanical Garden Press

Download references

Acknowledgements

The authors wish to thank Ms. Liliana Pastrana for her availability to share with us the traditional Diaguita-Calchaquíes knowledge about Mikuna and Gabriela Dantur for the contribution to the illustration of B. burruyacuensis. Research carried on in the frame of the Project DAGRI-UNIFI-PID2019—UM and the Master Course “Natural Resources Management for Tropical Rural Development”—UNIFI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Giordani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material S1

. Alignment of the sequences obtained with Clustalx and adjusted by eye by the authors. The last positions, coded as 0 and 1, represent the coding of indels produced by Gapcoder (see materials and methods) (NEX 60 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gori, M., Biricolti, S., Pedrazzani, S. et al. Berberis burruyacuensis O. R. Dantur, S. Radice, E. Giordani, A. Papini sp. nov. (Berberidaceae): a new species. Genet Resour Crop Evol 68, 1799–1808 (2021). https://doi.org/10.1007/s10722-020-01096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-01096-y

Keywords

  • Berberis mikuna
  • Berberis burruyacuensis
  • Sacha mikuna
  • Barcoding
  • Yunga