Skip to main content
Log in

Characterization of EST-SSR markers in Curcuma kwangsiensis S. K. Lee & C. F. Liang based on RNA sequencing and its application for phylogenetic relationship analysis and core collection construction

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Curcuma kwangsiensis S. K. Lee & C. F. Liang, a traditional herb in southern China, accumulates substantial amounts of active components, curcuminoids and volatile oil. However, the limited hereditary information and SSR markers have hindered its breeding program and genetic analysis. Here, we examined the transcriptome of C. kwangsiensis using next-generation sequencing (NGS) technology. A dataset with 8.17 Gb of raw reads was generated and assembled into 77,976 unigenes. Moreover, 11,678 EST-SSR markers were screened from transcriptome data. Of the 800 synthesized primer pairs, 486 (60.8%) exhibited successful amplification and 115 (23.7%) were polymorphic. A set of 24 selected markers showed high cross-species transferabilities among 13 Curcuma species. In total, 277 alleles (6–19 alleles per locus) were discovered, and the polymorphic information content (PIC) ranged from 0.496 to 0.905. Based on the results of cluster and structure analyses, the 75 accessions were classified into four major groups with some admixtures. Finally, a core collection (22 accessions) was identified, exhibiting Na, Ne, I, and PIC values with retention rates of 87.7%, 107.8%, 102.5% and 102%, respectively. All these unigenes and EST-SSRs will be useful for germplasm resource evaluation and for diversifying the potential of product derivatives from Curcuma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anoumaa M, Yao NK, Kouam EB, Kanmegne G, Machuka E, Osama SK, Nzuki I, Kamga YB, Fonkou T, Omokolo DN (2017) Genetic diversity and core collection for potato (Solanum tuberosum L.) cultivars from cameroon as revealed by SSR markers. Am J Potato Res 94:449–463

    Article  CAS  Google Scholar 

  • Awasthi P, Singh A, Sheikh G, Mahajan V, Gupta AP, Gupta S, Bedi YS, Gandhi SG (2017) Mining and characterization of EST-SSR markers for Zingiber officinale Roscoe with transferability to other species of Zingiberaceae. Physiol Mol Biol Pla 23:925–931

    Article  CAS  Google Scholar 

  • Backeljau T, De Bruyn L, De Wolf H, Jordaens K, Van Dongen S, Winnepennincks B (1996) Multiple UPGMA and neighbor-joining trees and the performance of some computer packages. Mol Biol Evol 13:309

    Article  CAS  Google Scholar 

  • Banerjee S, Singh S, Pandey H, Pandey P, Rahman LU (2012) Conservation and storage of Curcuma amada Roxb. synseeds on Luffa sponge matrix and RAPD analysis of the converted plantlets. Ind Crop Prod 36:383–388

    Article  CAS  Google Scholar 

  • Barboza K, Beretta V, Kozub PC, Salinas C, Morgerfeld MM, Galmarini CR, Cavagnaro PF (2018) Microsatellite analysis and marker development in garlic: distribution in EST sequence, genetic diversity analysis, and marker transferability across Alliaceae. Mol Genet Genomics 293:1091–1106

    Article  CAS  PubMed  Google Scholar 

  • Belaj A, del Carmen D-G, Atienza SG, Urdíroz NM, De la Rosa R, Satovic Z, Martín A, Kilian A, Trujillo I, Valpuesta V, Del Río C (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Genomes 8:365–378

    Article  Google Scholar 

  • Bostein D, White RL, Sholnick M, David RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    Google Scholar 

  • Cheng YL, Yang Y, Wang ZY, Qi BY, Yin YL, Li HG (2015) Development and characterization of EST-SSR markers in Taxodium ‘zhongshansa.’ Plant Mol Biol Rep 33:1–11

    Article  CAS  Google Scholar 

  • Di Guardo M, Scollo F, Ninot A, Rovira M, Hermoso JF, Distefano G, La Malfa S, Batlle I (2019) Genetic structure analysis and selection of a core collection for carob tree germplasm conservation and management. Tree Genet Genomes 15:41

    Article  Google Scholar 

  • Dosoky NS, Setzer WN (2018) Chemical composition and biological activities of essential oils of Curcuma species. Nutrients 10:1196

    Article  PubMed Central  CAS  Google Scholar 

  • Duan HJ, Cao S, Zheng HQ, Hu DH, Lin J, Cui BB, Lin HZ, Hu RY, Wu B, Sun YH, Li Y (2017) Genetic characterization of Chinese fir from six provinces in southern China and construction of a core collection. Sci Rep 7:13814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol (Amst) 29:51–63

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the sofware STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Frankel H (1984) Genetic perspectives of germplasm conservation. In: Arber WK, Llimensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, pp 161–170

    Google Scholar 

  • Frankel H, Brown AHD (1984) Current plant genetic resources-A critical appraisal. In: Chopra VL, Joshi BC, Sharma RP, Bansal HC (eds) Genetics: new frontiers. Oxford & IBH Publishing Co., New Delhi India, pp 3–13

    Google Scholar 

  • Ismail NA, Rafii MY, Mahmud TMM, Hanafi MM, Miah G (2016) Molecular markers: a potential resource for ginger genetic diversity studies. Mol Biol Rep 43:1347–1358

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Parihar DK (2019) Molecular marker based genetic diversity study of wild, cultivated and endangered species of Curcuma from Chhattisgarh region for in situ conservation. Biocatal Agric Biotechnol 18:101033

    Article  Google Scholar 

  • Jan HU, Rabbani MA, Shinwari ZK (2011) Assessment of genetic diversity of indigenous turmeric (Curcuma longa L.) germplasm from Pakistan using RAPD markers. J Med Plants Res 5(5):823–830

    CAS  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114

    Article  CAS  PubMed  Google Scholar 

  • Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG, Kim TS, Cho EG, Park YJ (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23:2155–2162

    Article  CAS  PubMed  Google Scholar 

  • Komatsu K, Sasaki Y, Tanaka K, Kuba Y, Fushimi H, Cai SQ (2008) Morphological, genetic, and chemical polymorphism of Curcuma kwangsiensis. J Nat Med 62:413–422

    Article  CAS  PubMed  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon AF, Boursiquot JM, This P (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol 8(1):31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li N, Zheng YQ, Ding HM, Li HP, Peng HZ, Jiang B, Li HB (2018) Development and validation of SSR markers based on transcriptome sequencing of Casuarina equisetifolia. Trees 32:41–49

    Article  CAS  Google Scholar 

  • Liang M, Yang XM, Li H, Su SY, Yi HL, Chai LJ, Deng XX (2015) De novo transcriptome assembly of pummelo and molecular marker development. PLoS ONE 10:e0120615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu FM, Hong Z, Yang ZJ, Zhang NN, Liu XJ, Xu DP (2019) De novo transcriptome analysis of Dalbergia odorifera T. Chen (Fabaceae) and transferability of SSR markers developed from the transcriptome. Forests 10(2):98

    Article  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Huang T, Yang ZF, Tang L, Cheng YJ, Wang JP, Ma X, Zhang XQ (2018) EST-SSR marker characterization based on RNA-sequencing of Lolium multiflorum and cross transferability to related species. Mol Breeding 38:80

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6.5: genetic analysis in Excel. Population genetic sofware for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rowland LJ, Alkharouf N, Darwish O, Ogden EL, Polashock JJ, Bassil NV, Main D (2012) Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biol 12:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem 91:621–632

    Article  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Sheeja TE, Deepa K, Santhi R, Sasikumar B (2015) Comparative transcriptome analysis of two species of Curcuma contrasting in a high-value compound curcumin: insights into genetic basis and regulation of biosynthesis. Plant Mol Biol Rep 33:1825–1836

    Article  CAS  Google Scholar 

  • Shukla A, Singh VK, Bharadwaj DR, Kumar R, Rai A, Rai AK, Mugasimangalam R, Parameswaran S, Singh M, Naik PS (2015) De novo assembly of bitter gourd transcriptomes: gene expression and sequence variations in gynoecious and monoecious lines. PLoS ONE 10:e0128331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun JR, Bu JL, Zhao H, Mao YP, Zeng W, Guo J, Huang LQ (2018) Multivariate data analysis of volatile metabolites in rhizomes and radixes of four medicinal plants from Curcuma L. Acta Pharm Sin 53(8):1215–1224 ((in Chinese))

    Google Scholar 

  • Syamkumar S, Sasikumar B (2007) Molecular marker based genetic diversity analysis of Curcuma species from India. Sci Hortic 112:235–241

    Article  CAS  Google Scholar 

  • Taheri S, Abdullah TL, Rafii MY, Harikrishna JN, Werbrouck SPO, Teo CH, Sahebi M, Azizi P (2019) De novo assembly of transcriptomes, mining, and development of novel EST-SSR markers in Curcuma alismatifolia (Zingiberaceae family) through Illumina sequencing. Sci Rep 9:3047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taheri S, Abdullah TL, Yusop MR, Hanafi MM, Sahebi M, Azizi P, Shamshiri RR (2018) Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules 23:399

    Article  PubMed Central  CAS  Google Scholar 

  • Theanphong O, Mingvanish W (2017) Chemical constituents and antioxidant activities of essential oils from roots and rhizomes of Curcuma alismatifolia Gagnap. from Thailand. J Appl Sci 16:105–111

    Article  Google Scholar 

  • Wei WL, Qi XQ, Wang LH, Zhang YX, Hua W, Li DH, Lv HX, Zhang XR (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12(1):451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei ZZ, Sun ZZ, Cui BB, Zhang QX, Xiong M, Wang X, Zhou D (2016) Transcriptome analysis of colored calla lily (Zantedeschia rehmannii Engl.) by Illumina sequencing: de novo assembly, annotation and EST-SSR marker development. PeerJ 4: e2378. https://doi.org/10.7717/peerj.2378

  • Wu J, Cai CF, Cheng FY, Cui HL, Zhou H (2014) Characterisation and development of EST-SSR markers in tree peony using transcriptome sequences. Mol Breeding 34:1853–1866

    Article  CAS  Google Scholar 

  • Xu CQ, Gao J, Du ZF, Li K, Wang Z, Li YY, Pang XM (2016) Identifying the genetic diversity, genetic structure and a core collection of Ziziphus jujuba Mill. Var. jujuba accessions using microsatellite markers. Sci Rep 6: 31503. https://doi.org/10.1038/srep31503

  • Xu XY, Meng X, Li S, Gan RY, Li Y, Li HB (2018) Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients 10:1553

    Article  PubMed Central  CAS  Google Scholar 

  • Ye YJ, Feng L, Liang XH, Liu TT, Cai M, Cheng TR, Wang J, Zhang QX, Pan HT (2019) Characterization, validation, and cross-species transferability of newly developed EST-SSR markers and their application for genetic evaluation in crape myrtle (Lagerstroemia spp). Mol Breeding 39:26

    Article  CAS  Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE Version 1.31. University of Alberta Canada

  • Zeng JH, Xu GB, Chen X (2008) Application of the chromatographic fingerprint for quality control of essential oil from GuangXi Curcuma kwangsiensis. Med Chem Res 18:158–165

    Article  CAS  Google Scholar 

  • Zhang LY, Yang ZW, Cheng F, Su P, Chen DK, Pan WY, Fang YX, Dong CZ, Zheng X, Du ZY (2017) Composition and bioactivity assessment of essential oils of Curcuma longa L. collected in China. Ind Crop Prod 109:60–73

    Article  CAS  Google Scholar 

  • Zhang SJ, Liu N, Sheng AW, Ma GH, Wu GJ (2011) In vitro plant regeneration from organogenic callus of Curcuma kwangsiensis Lindl. (Zingiberaceae). Plant Growth Regul 64:141–145

    Article  CAS  Google Scholar 

  • Zhang ZY, Xie WG, Zhao YQ, Zhang JC, Wang N, Ntakirutimana F, Yan JJ, Wang YR (2019) EST-SSR marker development based on RNA-sequencing of E. sibiricus and its application for phylogenetic relationships analysis of seventeen Elymus species. BMC Plant Biol 19:235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao J, Tong YQ, Ge TM, Ge JW (2016) Genetic diversity estimation and core collection construction of Sinojackia huangmeiensis based on novel microsatellite markers. Biochem Syst Ecol 64:74–80

    Article  CAS  Google Scholar 

  • Zhou Q, Mu KM, Ni ZX, Liu XH, Li YG, Xu LA (2019) Analysis of genetic diversity of ancient Ginkgo populations using SSR markers. Ind Crop Prod 145:111942

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support is from Key-Area Research and Development Program of Guangdong Province (2020B020220007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that the experiments comply with the current laws of China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Xu, Y., Li, D. et al. Characterization of EST-SSR markers in Curcuma kwangsiensis S. K. Lee & C. F. Liang based on RNA sequencing and its application for phylogenetic relationship analysis and core collection construction. Genet Resour Crop Evol 68, 1503–1516 (2021). https://doi.org/10.1007/s10722-020-01079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-01079-z

Keywords

Navigation