Skip to main content
Log in

Male sterility in onion (Allium cepa L.): origin: origin, evolutionary status, and their prospectus

  • Review
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Onion (Allium cepa L.) is the most diversified crop of the family Alliaceae; it is in cultivation since from ancient era for its edible bulbs and verdant foliage due to the immense nutritional and medicinal properties. The increased social acceptance of bulb onion in daily diet could lead to an increase in cultivable area with a similar bulb production. However, the output per unit area had limited due to the lack of exploitation of heterosis for bulb yield. The only possibility to increase the onion productivity is to increase the volume of the individual bulb, and it can achieve by exploiting heterosis for earliness, biotic and abiotic stress resistance, bulb weight, and size by the development of hybrid with the use of male sterility mechanisms like cytoplasmic-genic male sterility or cytoplasmic male sterility system in onion. The male sterility trait is precious in heterosis breeding due to its potential advantages in the development of onion hybrids. In these perspectives, the present review reveals the origin, evolution, maintenance, and prevalence of male sterility systems of onion and the technique of identification of the male sterility systems. The polymorphisms between male-sterile and male-fertile phenotypes difference with morphological-molecular markers with the marker-phenotype linkage of onion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelnoor RV, Christensen AC, Mohammed S, Munoz-Castillo B, Moriyama H, Mackenzie SA (2006) Mitochondrial genome dynamics in plants and animals: convergent gene fusions of a MutS homologue. J Mol Evol 63:165–173

    CAS  PubMed  Google Scholar 

  • Alcala J, Pike LM, Giovannoni JJ (1999) Identification of plastome variants useful for cytoplasmic selection and cultivar identification in onion. J Am Soc Hortic Sci 124:122–127

    CAS  Google Scholar 

  • Ali M, Dowker BD, Currah L, Mumford PM (1984) Floral biology and pollen viability of parental lines of onion hybrids. Ann Appl Biol 104:167–174

    Google Scholar 

  • Ali M, Thomson M, Afzal M (2000) Garlic and onions: their effect on eicosanoid metabolism and its clinical relevance. Prostaglandins Leukot Essent Fat Acids 62:55–73

    CAS  Google Scholar 

  • Bang H, Cho DY, Yoo K, Yoon M, Patil BS, Kim S (2011) Development of simple PCR-based markers linked to the Ms locus, a restorer-of-fertility gene in onion (Allium cepa L.). Euphytica 179:439–449

    Google Scholar 

  • Bang H, Kim S, Park SO, Yoo KS, Patil BS (2013) Development of a codominant CAPS marker linked to the Ms locus controlling fertility restoration in onion (Allium cepa L.). Sci Hort 153:42–49

    CAS  Google Scholar 

  • Banga O, Petiet J (1958) Breeding male sterile lines dutch onion varieties as preliminary to the breeding of hybrid varieties. Euphytica 72:1–30

    Google Scholar 

  • Bark OH, Havey MJ (1995) Similarities and relationships among populations of the bulb onion as estimated by nuclear RFLPs. Theor Appl Genet 90:607–614

    Google Scholar 

  • Bellaoui M, Martin-Canadell A, Pelletier G, Budar F (1998) Low-copy number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrial genome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol Genet Genom 257:177–185

    CAS  Google Scholar 

  • Berninger E (1965) Contribution a`l’e´tude de la sterilite´ maˆle de l’oignon (Allium cepa L.). Annales de l’Amélioration des Plantes 15:183–199

    Google Scholar 

  • Bradeen JM, Havey MJ (1995) Randomly amplified polymorphic DNA in bulb onion and its use to assess inbred integrity. J Am Soc Hort Sci 120:752–758

    CAS  Google Scholar 

  • Budar F, Touzet P, De Paepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117(1):3–16

    CAS  PubMed  Google Scholar 

  • Campbell WF, Cotner SD, Pollock BM (1968) Preliminary analysis of the onion (Allium cepa L.) seed production problem. HortScience 3:40–41

    Google Scholar 

  • Cho KS, Yang TJ, Kwon YS, Woo JG (2001) Development and application of SCAR markers related to cytoplasmic male sterility in onion (Allium cepa L). Korean J Hortic Sci 42:527–532

    CAS  Google Scholar 

  • Cho KS, Yang TJ, Hong SY, Kwon YS, Woo JG, Park HG (2006) Determination of cytoplasmic male sterile factors in onion plants (Allium cepa L.) using PCR–RFLP and SNP markers. Mol Cells 21:411–417

    CAS  PubMed  Google Scholar 

  • Courcel AGL, de Vedel F, Boussac JM (1989) DNA polymorphism in Allium cepa cytoplasms and its implications concerning the origin of onions. Theor Appl Genet 77:793–798

    PubMed  Google Scholar 

  • Currah L, Ockendon D (1978) Protandry and the sequence of flower opening in the onion. New Phytol 81:419–428

    Google Scholar 

  • Davis EW (1957) The distribution of the male sterility gene in onion. Proc Am Soc Hortic Sci 70:316–318

    Google Scholar 

  • Devi A, Rakshit K, Sarania B (2014) Ethnobotanical notes on Allium species of Arunachal Pradesh India. Indian J Tradit Know 13(3):606–612

    Google Scholar 

  • Do GS, Suzuki G, Mukai Y (2004) Genomic organization of a novel root alliinase gene, ALL1, in onion. Gene 325:17–24

    CAS  PubMed  Google Scholar 

  • Dyki B (1973a) Cytological investigation of male sterile onion (Allium cepa L.) plants of the variety “Wolska” and “Rawska.” Biul Biul Warzyw Poland 14:139–148

    Google Scholar 

  • Dyki B (1973b) Cytological studies on microspore formation in male fertile and male-sterile onions (Allium cepa L.) of the “Wolska” and “Rawska” varieties. Biul Warzyw Poland 15:213–221

    Google Scholar 

  • Emsweller SL, Jones HA (1935) An interspecific hybrid in Allium. Hilgardia 9:265–273

    Google Scholar 

  • Engelke T, Tatlioglu TA (2002) PCR-marker for the CMS1 inducing cytoplasm in chives derived from recombination events affecting the mitochondrial gene atp9. Theor Appl Genet 104:698–702. https://doi.org/10.1007/s00122-001-0770-7

    Article  CAS  PubMed  Google Scholar 

  • Engelke T, Terefe D, Tatlioglu T (2003) A PCR-based marker system monitoring CMS-S, CMS-T and N-cytoplasm in the onion (Allium cepa L.). Theor Appl Genet 107:162–167

    CAS  PubMed  Google Scholar 

  • Erickson HT, Gabelman WH (1954) Potential value of inbreds and F1 hybrid onions for seed production. Proc Am Soc for Hortic Sci 64:393–398

    Google Scholar 

  • Fredotovic Z, Samanic I, Weiss-Schneeweiss H, Kamenjarin J, Jang T, Puizina J (2014) Triparental origin of triploid onion, Allium × cornutum (Clementi ex Visiani, 1842), as evidenced by molecular, phylogenetic and cytogenetic analyses. BMC Plant Biol 14(24):1–14

    Google Scholar 

  • Fujieda K, Matsuoka N, Fujieda Y (1979) Vegetative multiplication of onion, Allium cepa L. through tissue culture. J Jpn Soc Hortic Sci 48:186–194

    Google Scholar 

  • Gallagher LJ, Betz SK, Chase CD (2002) Mitochondrial RNA editing truncates a chimeric open reading frame associated with S male-sterility in maize. Curr Genet 42:179–184

    CAS  PubMed  Google Scholar 

  • Gerasimova SV, Khlestkina EK, Kochetov AV, Shumny VK (2017) Genome editing system CRISPR/CAS9 and peculiarities of its application in monocots. Russ J Plant Physiol 64:141–155

    CAS  Google Scholar 

  • Gorkce AF, Havey MJ (2006) Linkage equilibrium among tightly linked RFLPs and the Ms locus in open-pollinated onion populations. J Am Soc Hortic Sci 127:944–946

    Google Scholar 

  • Hanelt P (1990) Taxonomy, evolution, and history. In: Rabinowitch HD, Brewster JL (eds) Onions and Allied Crops 1. CRC Press, Boca-Raton, Florida, pp 1–26

    Google Scholar 

  • Hanson MR (1991) Plant mitochondrial mutations and male sterility. Ann Rev Genet 25:461–486

    CAS  PubMed  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:154–169

    Google Scholar 

  • Hanson MR, Conde MF (1985) Functioning and variation of cytoplasmic genomes lessons from cytoplasmic-nuclear interactions affecting male fertility in plants. Inter Rev Cytol 94:213–267

    CAS  Google Scholar 

  • Havey MJ (1991a) Phylogenetic relationships among cultivated Allium species from restriction enzyme analysis of the chloroplast genome. Theor Appl Genet 81:752–757

    CAS  PubMed  Google Scholar 

  • Havey MJ (1991b) History of releases from the onion breeding program of the United States Department of Agriculture. Allium Improv Newsl 1:50–54

    Google Scholar 

  • Havey MJ (1991c) Molecular characterization of the interspecific origin of viviparous onion. J Hered 82:501–503

    CAS  Google Scholar 

  • Havey MJ (1992a) Restriction enzyme analysis of the chloroplast and nuclear 45s ribosomal DNA of Allium sections Cepa and Phyllodolon. Plant Syst Evol 183:17–31

    CAS  Google Scholar 

  • Havey MJ (1992b) Restriction enzyme analysis of the nuclear 45s ribosomal DNA of six cultivated Alliums. Plant Syst Evol 181:45–55

    CAS  Google Scholar 

  • Havey MJ (1993) A putative donor of S–cytoplasm and its distribution among open–pollinated populations of onion. Theor Appl Genet 86:128–134

    CAS  PubMed  Google Scholar 

  • Havey MJ (1994) The cytoplasms of sterile lines used to produce commercial hybrid-onion seed. Allium Improv Newsl 4:25–27

    Google Scholar 

  • Havey MJ (1995) Identification of cytoplasms using the polymerase chain reaction to aid in the extraction of maintainer lines from open-pollinated populations of onion. Theor Appl Genet 90:263–268

    CAS  PubMed  Google Scholar 

  • Havey MJ (1997) On the origin and distribution of normal cytoplasm of onion. Genet Resour Crop Evol 44:307–313

    Google Scholar 

  • Havey MJ (1999) Seed yield, floral morphology, and lack of male-fertility restoration of male-sterile onion (Allium cepa L.) populations possessing the cytoplasm of Allium galanthum Kir. et Kar. J Am Soc Hortic Sci 124:626–629

    Google Scholar 

  • Havey MJ (2000) Diversity among male-sterility-inducing and male-fertile cytoplasms of onion. Theor Appl Genet 101:778–782

    CAS  Google Scholar 

  • Havey MJ (2013) Single nucleotide polymorphisms in linkage disequilibrium with the male-fertility restoration (Ms) locus of onion. J Am Soc Hortic Sci 138:306–309

    CAS  Google Scholar 

  • Havey MJ, Bark O (1994) Molecular confirmation that sterile cytoplasm has been introduced into open-pollinated populations of Grano-type onion. J Am Soc Hortic Sci 119:90–93

    CAS  Google Scholar 

  • Havey M, Randle W (1996) Combining abilities of open pollinated long-day onion populations. J Am Soc Hortic Sci 121:604–608

    Google Scholar 

  • Holford P, Newbury HJ, Croft JH (1988) Differences in the mitochondrial DNA of male-fertile, CMS-S and CMS-T onions. Eucarpia Proceedings of 4th Allium Symposium pp70–79

  • Holford P, Croft J, Newbury HJ (1991) Structural studies of microsporogenesis in fertile and male-sterile onions (Allium cepa L.) containing the CMS-S cytoplasm. Theor Appl Genet 82:745–755

    CAS  PubMed  Google Scholar 

  • Huo YM, Liu BJ, Yang YY, Miao J, Gao LM, Kong SP, Wang ZB, Kitano H, Wu X (2015) AcSKP1, a multiplex PCR based co-dominant marker in complete linkage disequilibrium with the male-fertility restoration (Ms) locus, and its application in open-pollinated populations of onion. Euphytica 204:711–722

    CAS  Google Scholar 

  • Jakse J, Meyer JDF, Suzuki G, McCallum J, Cheung F, Town CD, Havey MJ (2008) Pilot sequencing of onion genomic DNA reveals fragmented transposable elements, low gene densities, and significant gene enrichment after methyl filtration. Mol Genet Genom 280:287–292

    CAS  Google Scholar 

  • Janska H, Sarria R, Woloszynska M, Arrieta-Montiel M, Mackenzie SA (1998) Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones HA (1936) A male-sterile onion. Proc Am Soc Hortic Sci 34:582–585

    Google Scholar 

  • Jones HA (1944) An Autobiography Herbertia 11:35–36

    Google Scholar 

  • Jones HA, Clarke A (1943) Inheritance of male sterility in the onion and the production of hybrid seed. Proc Am Soc Hortic Sci 43:189–194

    Google Scholar 

  • Jones HA, Clarke A (1947) The story of hybrid onions. USDA Yearbook of Agriculture pp 320–326

  • Jones HA, Davis G (1944) Inbreeding and heterosis and their relation to the development of new varieties of onions. USDA Technical Bulletin p 874

  • Jones HA, Emsweller SL (1936) A male-sterile onion. Proc Am Soc Hortic Sci 34:582–585

    Google Scholar 

  • Jones HA, Mann LK (1963) Onions and their allies. Leonard Hill Publishers, New York

    Google Scholar 

  • Jones HA, Perry B, Edmundson W (1949) Vegetative propagation of short-day varieties of onions as an aid in a breeding program. J Am Soc Hortic Sci 53:367–370

    Google Scholar 

  • Joshi H, Tandon J (1976) Heterosis for yield and its genetic basis in the onion. Indian J Agri Sci 46:88–92

    Google Scholar 

  • Kanazawa A, Tsutsumi N, Hirai A (1994) Reversible changes in the composition of the population of mtDNAs during dedifferentiation and regeneration in tobacco. Genetics 138:865–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S (2014) A co-dominant molecular marker in linkage disequilibrium with a restorer-of-fertility gene (Ms) and its application in re-evaluation of inheritance of fertility restoration in onions. Mol Breed 34:769–778

    CAS  Google Scholar 

  • Kim B, Kim S (2019) Identification of a variant of CMS-T cytoplasm and development of high resolution melting markers for distinguishing cytoplasm types and genotyping a restorer-of-fertility locus in onion (Allium cepa L.). Euphytica. https://doi.org/10.1007/s10681-019-2492-4

    Article  Google Scholar 

  • Kim S, Yoon M (2010) Comparison of mitochondrial and chloroplast genome segments from three onion (Allium cepa L.) cytoplasm types and identification of trans-splicing intron of cox2. Curr Genet 56:177–188

    CAS  PubMed  Google Scholar 

  • Kim S, Lim H, Park S, Cho K, Sung S, Oh D, Kim K (2007) Identification of a novel mitochondrial genome type and development of molecular makers for cytoplasm classification in radish (Raphanus sativus L.). Theor Appl Genet 115:1137–1145

    CAS  PubMed  Google Scholar 

  • Kim S, Lee ET, Cho DY, Han T, Bang H, Patil BS, Yoon MK (2009) Identification of a novel chimeric gene, orf725, and its use in development of a molecular marker for distinguishing among three cytoplasm types in onion (Allium cepa L.). Theor Appl Genet 118(3):433–441

    CAS  PubMed  Google Scholar 

  • Kim S, Park JY, Yang T (2015) Comparative analysis of the complete chloroplast genome sequences of a normal male–fertile cytoplasm and two different cytoplasms conferring cytoplasmic male sterility in onion (Allium cepa L). J Hortic Sci Biotechnol 90(4):459–468

    CAS  Google Scholar 

  • Kim B, Kim K, Yang T, Kim S (2016) Completion of the mitochondrial genome sequence of onion (Allium cepa L.) containing the CMS–S male–sterile cytoplasm and identification of an independent event of the ccmFN gene split. Curr Genet 62:873–885

    CAS  PubMed  Google Scholar 

  • Kim B, Kim CW, Kim S (2019) Inheritance of fertility restoration of male-sterility conferred by cytotype Y and identification of instability of male fertility phenotypes in onion (Allium cepa L.). J Hortic Sci Biotech 94(3):341–348

    CAS  Google Scholar 

  • Kmiec B, Woloszynska M, Janska H (2006) Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 50:149–159

    CAS  PubMed  Google Scholar 

  • Kohn CV, Kiełkowska A, Havey MJ (2013) Sequencing and annotation of the chloroplast DNAs and identification of polymorphisms distinguishing normal male-fertile and male-sterile cytoplasms of onion. Genome 56:737–742

    Google Scholar 

  • Kong X, Liu D, Zheng J, Khan A, Li B, Diao Y, Zhou R (2019) RNA editing analysis of ATP synthase genes in the cotton cytoplasmic male sterile line H276A. Biol Res 52:6

    PubMed  PubMed Central  Google Scholar 

  • Koul A, Gohil R (1971) Further studies on natural triploidy in viviparous onion. Cytologia 36:253–261

    Google Scholar 

  • Laser KD, Lersten NR (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev 38:425–454

    Google Scholar 

  • Li XQ, Chatrit P, Mathieu C, Vedel F, De-Paepe R, Remy R, Ambard-Bretevitle F (1988) Regeneration of cytoplasmic male sterile protoclones of Nicotiana sylvestris with mitochondrial variations. Curr Genet 13:261–266

    CAS  Google Scholar 

  • Lilly JW, Havey MJ (2001) Sequence analysis of a chloroplast inter genic spacer for phylogenetic estimates in Allium section Cepa and a PCR-based polymorphism detecting mixtures of male-fertile and male-sterile cytoplasmic onion. Theor Appl Genet 102:78–82

    CAS  Google Scholar 

  • Little T, Jones HA (1944) The distribution of the male sterility gene in varieties of onion. Herbertia 11:310–312

    Google Scholar 

  • Maab H (1997) Studies on triploid viviparous onions and their origin. Genet Resour Crop Evol 44:1–5

    Google Scholar 

  • Magruder R, Webster R, Jones H, Randall T, Snyder G, Brown H, Hawthorn L, Wilson A (1941) Descriptions of types of principal American varieties of onions. USDA Miscellaneous Publication No.435.

  • Manjunathagowda DC, Anjanappa M (2020) Identification and development of male sterile and their maintainer lines in short-day onion (Allium cepa L.) genotypes. Genet Resour Crop Evol 67(2):357–365

    CAS  Google Scholar 

  • McCallum J, Baldwin S, Shigyo M, Deng Y, van Heusden S, Pither-Joyce M, Kenel F (2012) AlliumMap-A comparative genomics resource for cultivated Allium vegetables. BMC Genom 13(1):168

    CAS  Google Scholar 

  • McCollum G (1971) Sterility of some interspecific Allium hybrids. J Am Soc Hortic Sci 96:359–362

    Google Scholar 

  • McCollum G (1980) Development of the amphidiploid of Allium galanthum × Allium cepa. J Hered 71:445–447

    Google Scholar 

  • Melgar S, Havey MJ (2010) The dominant Ms allele in onion shows reduced penetrance. J Am Soc Hortic Sci 135:49–52

    Google Scholar 

  • Monosmith H (1926) Male-sterility in Allium cepa L. Dissertation: Ph.D. Thesis, University of California

  • NHB (2017) National horticulture board. Hortic Stat Glance 2017:209–407

    Google Scholar 

  • Pathak CS (1997) A possible new source of male sterility in onion. Acta Hortic 433:313–316

    Google Scholar 

  • Pathak C, Gowda RV (1993) Breeding for the development of onion hybrids in India: problems and prospects. Acta Hortic 358:239–242

    Google Scholar 

  • Pathak CS, Gowda RV (1994) Breeding for the development of onion hybrids in India: problems and prospects. Acta Hortic 358:239–242

    Google Scholar 

  • Patti JA, Jadhav AS, Rane MS (1973) Male-sterility in Maharashtra onions (Allium cepa L.). Res J Mahatma Phule Krishi Vidyapeet 4:29–31

    Google Scholar 

  • Peterson CE, Foskett RL (1953) Occurrence of pollen sterility in seed fields of Scott-County-Globe onions. Proc Am Soc Hortic Sci 62:330–331

    Google Scholar 

  • Pike L, Yoo K (1990) A tissue culture technique for the clonal propagation of onion using immature flower buds. Sci Hortic 45:31–36

    Google Scholar 

  • Pring D, Tang H (2001) Mitochondrial atp6 transcript editing during microgametogenesis in male-sterile sorghum. Curr Genet 39:371–376

    CAS  PubMed  Google Scholar 

  • Reddy B, Rai K, Sarma N, Kumar I, Saxena K (2004) Cytoplasmic-nuclear male sterility: origin, evaluation and utilization. In: Jain HK, Kharkwal MC (eds) Plant breeding: mendelian to molecular approaches. Narosa Publishing House, New Delhi, India, pp 473–499

    Google Scholar 

  • Saini SS, Davis GN (1969a) Male-sterility in Allium cepa L. and some species hybrids. Econ Bot 23:37–49

    Google Scholar 

  • Saini SS, Davis GN (1969b) Male sterility in Allium cepa and some species hybrids. Econ Bot 23:37–49

    Google Scholar 

  • Sakai T, Imamura J (1993) Evidence for a mitochondrial subgenome containing radish atpA in a Brassica napus cybrid. Plant Sci 90:95–103

    CAS  Google Scholar 

  • Sato Y (1998) PCR amplification of CMS-specific mitochondrial nucleotide sequences to identify cytoplasmic genotypes of onion (Allium cepa L.). Theor Appl Genet 96:367–370

    CAS  PubMed  Google Scholar 

  • Satoh Y, Nagai M, Mikami T, Kinoshita T (1993) The use of mitochondrial DNA polymorphism in the classification of the individual onion plants by cytoplasmic genotypes. Theor Appl Genet 86:345–348

    CAS  PubMed  Google Scholar 

  • Schweisguth B (1973) E´tuded’un nouveau type de ste´rilite´ male chez l’oignon, Allium cepa L. Ann Amelior Plantes 23:221–233

    Google Scholar 

  • Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shivnanajappa D, Reddy DCL, Gowda VR, Antharamiah SS, Chennareddy A (2013) The genetic relatedness analysis of male sterile and their maintainer lines of onion (Allium cepa L.) by using RAPD primers. J Crop Sci Biotechnol 16:29–33

    Google Scholar 

  • Shukla P, Singh NK, Gautam R, Ahmed I, Yadav D, Sharma A, Kirti PB (2017) Molecular approaches for manipulating male sterility and strategies for fertility restoration in plants. Mol Biotechnol 59:445–457

    CAS  PubMed  Google Scholar 

  • Simon PW, Gabelman WH, Franklin DF (1991) Henry A. Jones (1889–1981). HortScience 26:1115–1118

    Google Scholar 

  • Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76

    CAS  PubMed  Google Scholar 

  • Suzuki GA, Ura SN, Do GS, Seo BB, Yamamoto M, Mukai Y (2001) BAC FISH analysis in Allium cepa. Genes Genet Syst 76:251–255

    CAS  PubMed  Google Scholar 

  • Suzuki G, Do GS, Mukai Y (2002) Efficient storage and screening system for onion BAC clones. Breed Sci 52:157–159

    CAS  Google Scholar 

  • Tatabe T (1968) Genetic studies on the leaf variegation of Allium cepa L. J Jpn Soc Hortic Sci 37:345–348

    Google Scholar 

  • van der Meer QP (1994) Onion hybrids: evaluation, prospects, limitations, and methods. Acta Hortic 358:243–250

    Google Scholar 

  • van der Meer QP, Van Bennekom JL (1968) Research on pollen distribution in onion seed fields. Euphytica 17:216–219

    Google Scholar 

  • van der Meer QP, Van Bennekom JL (1969) Effect of temperature on the occurrence of male sterility in onion (Allium cepa L.). Euphytica 18:389–394

    Google Scholar 

  • van der Meer QP, Van Bennekom JL (1971) Frequencies of genetical factors determing male sterility in onion (Allium cepa L.) and their significance for the breeding of hybrids. Euphytica 20:51–56

    Google Scholar 

  • Van der Valk P, De Vries SE, Everink JT, Verstappen F, De Vries JN (1991) Pre-and post-fertilization barriers to backcrossing the interspecific hybrid between Allium fistulosum L. and A. cepa L. with A. cepa. Euphytica 53(3):201–209

    Google Scholar 

  • Finkers R. van Workum W, van Kaauwen MPW, Huits H, Jungerius A, Vosman BJ, Scholten OE (2015) SEQUON–sequencing the onion genome source. In: Proceedings of the plant and animal genome XXIII–PAG, 2015 event plant and animal genome XXIII, San Diego, CA, USA

  • van Raamsdonk LDW, van Wietsma WA, de Vries JN (1992) Crossing experiments in Allium L. section Cepa. Bot J Linn Soc 109:293–303

    Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica 13:1–366

    Google Scholar 

  • Virnich H (1967) Untersuchungen fiber das Verhalten derm/innlichen Sterilit/it und anderer Eigenschaften bei poly-ploiden Zwiebeln (Allium cepa L.) als Grundlage ffir eine Nutzung in der Hybridzfichtung. Z Pflanzenzficht 58:205–244

    Google Scholar 

  • Vvedenskij A (1944) The genus Allium in the USSR. Herbertia 11:65–218

    Google Scholar 

  • Whitaker TW (1983) Dedication: Henry A. Jones (1889–1981) plant breeder extraordinaire. Plant Breed Rev 1:1–10

    Google Scholar 

  • Yamashita K, Tashiro Y (1999) A Possibility of developing a male sterile line of shallot (Allium cepa L. var Aggregatum) with cytoplasm from Allium galanthum Kar. et Kir. J Jpn Soc Hortic Sci 68:256–262

    CAS  Google Scholar 

  • Yamashita K, Arita H, Tashiro Y (1999) Cytoplasm of a wild species, Allium galanthum Kar. et Kir. is useful for developing the male sterile line of A. fistulosum L. J Jpn Soc Hortic Sci 68:788–797

    Google Scholar 

  • Yang YY, Huo YM, Miao J, Liu BJ, Kong SP, Gao LM, Liu C, Wang ZB, Tahara Y, Kitano H, Wu X (2013) Identification of two SCAR markers co–segregated with the dominant Ms- and recessive ms-alleles in onion (Allium cepa L.). Euphytica 190:267–277

    CAS  Google Scholar 

  • Zaegel V, Guermann B, Le Ret M, Andrés C, Meyer D, Erhardt M, Imbault P (2006) The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. The Plant Cell 18(12):3548–3563

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalasanuru Chandregowda Manjunathagowda.

Ethics declarations

Conflict of interest

We the authors contributed substantively and equally to this research and we declare that have no conflict of interest.

Ethical approval

The manuscript was not submitted anywhere else, and results were presented without fabrication, falsification, or inappropriate data manipulation. Research does not pose any threat to public health or national security.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunathagowda, D.C., Muthukumar, P., Gopal, J. et al. Male sterility in onion (Allium cepa L.): origin: origin, evolutionary status, and their prospectus. Genet Resour Crop Evol 68, 421–439 (2021). https://doi.org/10.1007/s10722-020-01077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-01077-1

Keywords

Navigation