Skip to main content
Log in

Characterization, identification and evaluation of a novel wheat-Agropyron cristatum (L.) Gaertn. disomic addition line II-30-5

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Agropyron cristatum (L.) Gaertn. (A. cristatum), which is an important wild relative of wheat (Triticum aestivum L.), exhibits multiple agronomic traits that are valuable for the genetic improvement of wheat. II-30-5 is derived from the BC3F1 progeny between wheat cv. Fukuhokomugi (Fukuho) and A. cristatum (2n = 4x = 28, PPPP). In this study, II-30-5 was proven to be a novel wheat-A. cristatum disomic 6P addition line by cytogenetics and A. cristatum expressed sequence tag-sequence-tagged site (EST-STS) markers. II-30-5 possessed several elite agronomic traits, such as good plant type, erect leaf position, short flag leaf, high thousand-grain weight, and high resistance to powdery mildew and leaf rust. Chromosomal rearrangements led to multiple addition lines in the same group of homologous group. Evaluation of the agronomic traits of different 6P addition lines showed that different 6P addition lines contain specific traits. In the same homologous group, the production of multiple addition lines increases the types of genetic variation for wheat improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

All data generated or analysed during this study are included in this published article.

References

  • An DG, Ma PT, Zheng Q, Fu SL, Li LH et al (2019) Development and molecular cytogenetic identification of a new wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. Theor Appl Genet 132(1):257–272

    CAS  PubMed  Google Scholar 

  • Benito C, Figueiras AM, Gonzalez-Jaen MT (1987) Location of genes coding isozyme markers on Aegilops umbellulata chromosomes adds data on homoeology among Triticeae chromosomes. Theor Appl Genet 73:581–588

    CAS  PubMed  Google Scholar 

  • Blake TK, Kadyrzhanova D, Shepherd KW, Islam AKMR, Langridge PL et al (1996) STS-PCR markers appropriate for wheat-barley introgression. Theor Appl Genet 93:826–832

    CAS  PubMed  Google Scholar 

  • Cuadrado A, Schwarzacher T, Jouve N (2000) Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor Appl Genet 101:711–717

    CAS  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae//Gene manipulation in plant improvement. Springer, New York, pp 209–279

    Google Scholar 

  • Du WL, Wang J, Pang Y, Wu J, Zhao J, Yang Q, Chen XH (2014) Development and application of PCR markers specific to the 1Ns chromosome of Psathyrostachys huashanica Keng with leaf rust resistance. Euphytica 200:207–220

    CAS  Google Scholar 

  • Friebe BR, Tuleen NA, Gill BS (1999) Development and identification of a complete set of Triticum aestivum-Aegilops geniculata chromosome addition lines. Genome 42:374–380

    Google Scholar 

  • Friebe B, Qi R, Nasuda S, Zhang P, Tuleen NA, Gill BS (2000) Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58

    Google Scholar 

  • Han FP, Fedak G, Benabdelmouna A, Armstrong K, Ouellet T (2003) Characterization of six wheat x Thinopyrum intermedium derivatives by GISH, RFLP, and multicolor GISH. Genome 46:490–495

    CAS  PubMed  Google Scholar 

  • Han HM, Bai L, Su JJ, Zhang JP, Song LQ, Gao AN, Yang XM, Li XQ, Liu WH, Li LH (2014) Genetic rearrangements of six wheat-Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS ONE 9:e9106

    Google Scholar 

  • Hsiao C, Asay KH, Dewey DR (1989) Cytogenetic analysis of interspecific hybrids and amphiploids between two diploid crested wheatgrasses Agropyron mongolicum and A cristatum. Genome 32:1079–1084

    Google Scholar 

  • Islam A, Shepherd KW (1981) Production of disomic wheat-barley chromosome addition lines using Hordeum bulbosum crosses. Genet Res 37:215–219

    Google Scholar 

  • Jauhar PP, Peterson TS (2006) Cytological analyses of hybrids and derivatives of hybrids between durum wheat and Thinopyrum bessarabicum, using multicolour fluorescent GISH. Plant Breed 125:19–26

    Google Scholar 

  • Martin A, Cabrera A, Esteban E, Hernández P, Ramírez MC, Rubiales D (1999) A fertile amphiploid between diploid wheat (Triticum tauschii) and crested wheatgrass (Agropyron cristatum). Genome 42:519–524

    CAS  PubMed  Google Scholar 

  • Miazga D (1987) Studies on the cv. Grana wheat (Triticum aestivum L.) lines with the cv. Dankowskie Zlote rye (Secale cereale L.) chromosome additions. I. Chromosome configurations at metaphase I. Genetica Polonica 28:327–331

    Google Scholar 

  • Miller TE, Reader SM, Ainsworth CC (1985) A chromosome of Hordeum chilense homoeologous to group 7 of wheat. Can J Genet Cytol 27:101–104

    Google Scholar 

  • Li LH, Dong YC (1991) Hybridization between Triticum aestivum L. and Agropyron michnoi Roshev. Theor Appl Genet 81:312–316

    CAS  PubMed  Google Scholar 

  • Li LH, Dong YC (1993) Progress in studies of Agropyron Gaertn. Acta Genetica Sinica 15:45–48

    Google Scholar 

  • Li LH, Dong YC, Zhou RH, Li XQ, Li P (1995) Cytogenetics and self-fertility of hybrids between Triticum aestivum L. and Agropyron cristatum (L.) Gaertn. Chin J Genet 22:105–112

    Google Scholar 

  • Li LH, Li X, Li P, Dong YC, Zhao G (1997) Establishment of wheat-Agropyron cristatum alien addition lines. I. Cytology of F3, F2BC1, BC4, and BC3F1 progenies. Acta Genetica Sinica 24:154–159

    CAS  Google Scholar 

  • Li LH, Yang XM, Zhou RH, Li XQ, Dong YC (1998) Establishment of wheat-Agropyron cristatum alien addition lines II. Identification of alien chromosomes and analysis of development approaches. Acta Genetica Sinica 25:538–544

    Google Scholar 

  • Li QF, Lu YQ, Pan CL, Zhang JP, Liu WH, Yang XM, Li XQ, Xi YJ, Li LH (2016a) Characterization of a novel wheat-Agropyron cristatum 2P disomic addition line with powdery mildew resistance. Crop Sci 56:2390–2400

    CAS  Google Scholar 

  • Li HH, Lv MJ, Song LQ, Zhang JP, Gao AN, Li LH, Liu WH (2016b) Production and identification of wheat-Agropyron cristatum 2P translocation lines. PLoS ONE 11:e0145928

    PubMed  PubMed Central  Google Scholar 

  • Liu C, Gong WP, Han R, Guo J, Li GR, Li HS, Song JM, Liu AF, Cao XY, Zhai SN, Cheng DG, Li GY, Zhao ZD, Yang ZJ, Liu JJ, Reader Stephen M (2019) Characterization, identification and evaluation of a set of wheat-Aegilops comosa chromosome lines. Sci Rep 9:4773

    PubMed  PubMed Central  Google Scholar 

  • Lu YQ, Yao MM, Zhang JP, Song LQ, Liu WH, Yang XM, Li XQ, Li LH (2016a) Genetic analysis of a novel broad-spectrum powdery mildew resistance gene from the wheat-Agropyron cristatum introgression line Pubing 74. Planta 244:713–723

    PubMed  Google Scholar 

  • Lu MJ, Lu YQ, Li HH, Pan CL, Guo Y, Zhang JP, Yang XM, Li XQ, Liu WH, Li LH (2016b) Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PLoS ONE 11:e0159577

    PubMed  PubMed Central  Google Scholar 

  • Luan Y, Wang XG, Liu WH, Li CY, Zhang JP, Gao AN, Wang YD, Yang XM, Li LH (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232:501–510

    CAS  PubMed  Google Scholar 

  • Peil A, Korzun V, Schubert V, Schumann E, Weber WE, Roder MS (1998) The application of wheat microsatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theor Appl Genet 96:138–146

    CAS  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res 26c(5):496–500

    Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: Concepts and methods of disease management. CIMMYT, Mexico, DF

    Google Scholar 

  • Said M, Parada AC, Gaál E, Molnár I, Cabrera A, Doležel J, Vrána J (2019) Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. Theor Appl Genet 132:2881–2898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senapati N, Semenov MA (2019) Assessing yield gap in high productive countries by designing wheat ideotypes. Sci Rep 9(1):5516

    PubMed  PubMed Central  Google Scholar 

  • Sharp P, Chao S, Desai S, Gale M (1989) The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor Appl Genet 78:342–348

    CAS  PubMed  Google Scholar 

  • Sheng BQ, Duan XY (1991) Improvement of scale 0–9 method for scoring adult plant resistance to powdery mildew of wheat. Beijing Agric Sci 1:38–39

    Google Scholar 

  • Schneider A, Molnár I, Molnár-Láng M (2010) Production and FISH identification of wheat-Aegilops biuncialis addition lines and their use for the selection of U and M genome-specific molecular (SSR) markers. Acta Agron Hung 58:151–158

    CAS  Google Scholar 

  • Schneider A, Rakszegi M, Molnár-Láng M, Szakács É (2016) Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theor Appl Genet 129(5):1045–1059

    CAS  PubMed  Google Scholar 

  • Song LQ, Jiang LL, Han HM, Gao AN, Yang XM, Li LH, Liu WH (2013) Efficient induction of wheat-Agropyron cristatum 6 P translocation lines and GISH detection. PLoS ONE 8:e69501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taketa S, Takeda K (2001) Production and characterization of a complete set of wheat-wild barley (Hordeum vulgare ssp. spontaneum) chromosome addition lines. Breed Sci 51:199–206

    CAS  Google Scholar 

  • Trethowan Richard M (2014) Defining a genetic ideotype for crop improvement. Methods Mol Biol 1145:1–20

    CAS  PubMed  Google Scholar 

  • Watanabe N, Fujii Y, Kato N, Ban T, Martinek P (2006) Microsatellite mapping of the genes for brittle rachis on homoeologous group 3 chromosomes in tetraploid and hexaploid wheat. J Appl Genet 47:93–98

    PubMed  Google Scholar 

  • Wu J, Xm Y, Wang H, Li HJ, Li LH, Li XQ, Liu WH (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20

    CAS  PubMed  Google Scholar 

  • Xu H, Yin D, Li LH, Wang Q, Li XQ, Yang XM, Liu WH, An DG (2012) Development and application of EST-based markers specific for chromosome arms of rye (Secale cereale L.). Cytogenet Genome Res 136:220–228

    CAS  PubMed  Google Scholar 

  • Yang WJ, Wang CY, Chen CH, Wang YJ, Zhang H et al (2016) Molecular cytogenetic identification of a wheat-rye 1R addition line with multiple spikelets and resistance to powdery mildew. Genome 59(4):277–288

    CAS  PubMed  Google Scholar 

  • Yu DS, Zhang J, Tan GX, Yu NS, Wang QY, Duan QQ, ChenG MJ, Yan CX, Wei ZK, Yu ZM, Huang WC, Li CW (2019) An easily-performed high-throughput method for plant genomic DNA extraction. Anal Biochem 569:28–30

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhang JP, Liu WH, Han HM, Lu YQ, Yang XM, Li XQ, Li LH (2015) Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor Appl Genet 128:1827–1837

    PubMed  Google Scholar 

  • Zhang JP, Liu WH, Lu YQ, Liu QX, Yang XM, Li XQ, Li LH (2017) A resource of large-scale molecular markers for monitoring Agropyron cristatum chromatin introgression in wheat background based on transcriptome sequences. Sci Rep 7:11942

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Han HM, Liu WH, Song LQ, Zhang JP, Zhou SH, Yang XM, Li XQ, Li LH (2019) Deletion mapping and verification of an enhanced-grain number per spike locus from the 6PL chromosome arm of Agropyron cristatum in common wheat. Theor Appl Genet 132:2815–2827

    CAS  PubMed  Google Scholar 

  • Zhou SH, Zhang J, Han HM, Zhang JP, Ma HH, Zhang Z, Lu YQ, Liu WH, Yang XM, Li XQ, Li LH (2019) Full-length transcriptome sequences of Agropyron cristatum facilitate the prediction of putative genes for thousand-grain weight in a wheat-A. cristatum translocation line. BMC Genomics 20:1025

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 31801349) and the Natural Science Foundation of Ningxia Province (No.2018AAC03036).

Author information

Authors and Affiliations

Authors

Contributions

Li LH conceived the research. Li QF and Lu YQ performed the research. Li QF wrote the manuscript. Pan CL, Wang ZJ, Liu FL, Zhang JP, Yang XM, Li XQ and Liu WH participated in the preparation of both the reagents and materials.

Corresponding authors

Correspondence to Qingfeng Li or Lihui Li.

Ethics declarations

Conflict of interest

All authors have read the manuscript and approved to submit to your journal. No conflict of interest declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 179 kb)

Supplementary file2 (XLS 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Lu, Y., Pan, C. et al. Characterization, identification and evaluation of a novel wheat-Agropyron cristatum (L.) Gaertn. disomic addition line II-30-5. Genet Resour Crop Evol 67, 2213–2223 (2020). https://doi.org/10.1007/s10722-020-00975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00975-8

Keywords

Navigation