Skip to main content
Log in

Leaf morpho-anatomical diversity analysis in mandarin (Citrus reticulata Blanco) genotypes using scanning electron microscopy

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The leaf morpho-anatomical studies were performed to assess the genetic divergence in mandarin (Citrus reticulata Blanco) germplasm and for obtaining a strong descriptor (s) to help in easy identification among closely related genotypes during the year 2017–18. Morphological traits of mature leaves of mandarin accessions were observed on basis of citrus descriptors. Leaf chlorophyll content was determined with a SPAD-502 chlorophyll meter under field conditions. Morpho-anatomical attributes were analysed by optical and scanning electron microscopes.In our study, mandarin genotypes exhibited variation with respect to leaf anatomy and photosynthetic traits despite having same pedigree. PAU Kinnow-1, a mutant of Kinnow was clustered away from its parent probably due to multiple variations arising in the parent as PAU Kinnow-1 was developed through gamma irradiation treatment. Therefore, it is suggested from our findings that leaf characters may vary among apparently close genotype such as Kinnow and PAU Kinnow-1. Likewise, genotypes Kara and King exhibited disparate leaf morpho-anatomy characters though King is a parent of Kara. Similarly, the genotypes like Kara, King, Wilking, and Willow Leaf could be differentiated based on their leaf traits. Genotypes namely Fair Child and Sunburst formed clear distinct clusters on basis of the diverse morpho-anatomical attributes. The dendrogram clearly differentiated the genotypes irrespective of their pedigree and geographical area of origin. In FCA plot, mandarin genotypic differentiation was the main structural component defining the first axis (57.11% of total diversity) whereas the inertia for the second axis was 17.54 per cent. The higher genotypic and phenotypic coefficient of variations were associated with higher heritability for petiole wing width, the number of open stomata and palisade parenchyma tissue length traits that may be more effective during selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abkenar AA, Isshiki S, Tashiro Y (2004) Phylogenetic relationships in the “true citrus fruit trees” revealed by PCR-RFLP analysis of cpDNA. Sci Hort 102:233–242

    CAS  Google Scholar 

  • Ahmad R, Struss D, Southwick SM (2003) Development and characterization of microsatellite markers in citrus. J Am Soc Hort Sci 128:584–590

    CAS  Google Scholar 

  • Ahmed S, Rattanpal HS, Singh G (2018) Diversity assessment of grapefruit (Citrus × paradisi) and tangelo (Citrus × tangelo) under Indian conditions using physico-chemical parameters and SSR markers. Appl Eco Environ Res 16:5343–5358

    Google Scholar 

  • Ahmed D, Comte A, Curk F, Costantino G, Luro Dereeper FA, Mournet P, Froelicher Y, Ollitrault P (2019) Genotyping by sequencing can reveal the complex mosaic genomes in gene pools resulting from reticulate evolution: a case study in diploid and polyploid citrus. Annal Bot 123:1231–1251

    CAS  Google Scholar 

  • Allard RW (1960) Principles of plant breeding. Wiley, New York, pp 83–108

    Google Scholar 

  • Almeida EB, Araujo JS, Santos-Filho FS, Zickel CS (2012) Leaf morphology and anatomy of Manilkara Adans (Sapotaceae) from northeastern Brazil. Plant Syst Evol. https://doi.org/10.1007/s00606-012-0697-2

    Article  Google Scholar 

  • Altaf N, Khan AR (2008) Variation within Kinnow (Citrus reticulata) and Rough Lemon (Citrus jambhiri). Pak J Bot 40:589–598

    Google Scholar 

  • Amar MH, Biswas MK, Zhang Z, Wen-Wu Guoa WW (2011) Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of citrus germplasm collection. Sci Hort 128:220–227

    CAS  Google Scholar 

  • Arzani K, Ghasemi M, Yadollahi A, Hokmabadi H (2013) Study of foliar epidermal anatomy of four pistachio rootstocks under water stress. IDESIA 31:101–107

    Google Scholar 

  • Avilan L, Dorantes I, Ruiz J, Rodriguez M (1998) Description of the limes and lemons in the collection of the Centro Nacional de Investigaciones Agropecuarias. Agron Trop Maracay 48:41–52

    Google Scholar 

  • Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531

    CAS  PubMed  Google Scholar 

  • Baswal AK, Rattanpal HS, Sidhu GS (2015) Varietal assessment and variability studies in grapefruit (Citrus paradisi Mac Fadyen) genotypes in subtropical zones of Punjab, India

  • Baswal AK, Rattanpal HS, Gill KS, Singh G (2017a) varietal evaluation and genetic variability analysis in Pummelo (Citrus grandis M.) genotypes under subtropics of Punjab. Green Farm 8:342–345

    Google Scholar 

  • Baswal AK, Rattanpal HS, Uppal GS, Gill KS (2017b) Assessment on performance and variability in different sweet orange (Citrus sinensis Obseck) cultivars under Punjab conditions. J Appl Nat Sci 9:780–783

    Google Scholar 

  • Beattie GA, Marcell LM (2002) Effect of alterations in cuticular wax biosynthesis on the physicochemical properties and topography of maize leaf surfaces. Plant Cell Environ 25:7–16

    Google Scholar 

  • Burton, GW (1952) Quantitative inheritance in grasses. Proc VI Int Grassland Cong, pp 277–83 Campos, ET, Espinosa, MAG., Warburton

  • Burton GW, deVane EW (1953) Estimating heritability in tall fescue (Festucaa rundinacea) from replicated clone material. Agron J 45:475–481

    Google Scholar 

  • Campos ET, Espinosa MAG, Warburton ML, Varela AM, Monter AV (2005) Characterization of mandarin (Citrus spp.) using morphological and AFLP markers. For Docum Elect (ISO) 30:687–693

    Google Scholar 

  • Dickison WC (2000) Integrative plant anatomy. Academic Press, New York

    Google Scholar 

  • Domingues ET, Souza VC, Sakuragui CM, Pompeu Junior J, Pio RM, Teofilo Sobrinho J, Souza JP (1999) Morphological characterization of mandarins from the Active Citrus Gene Bank of the Centro de Citricultura Sylvio Moreira/IAC. Sci Agric 56:197–206

    Google Scholar 

  • Dorji K, Yapwattanaphun C (2011) Assessment of morphological diversity for local mandarin (Citrus reticulata Blanco) accessions in Bhutan. J Agric Technol 7:485–495

    Google Scholar 

  • Erner Y, Shomer I (1996) Morphology and anatomy of stems and pedicels of spring flush shoots associated with citrus fruit Set. Ann Bot 77:537–545

    Google Scholar 

  • Etxeberria E, Narciso C (2012) Phloem Anatomy of citrus trees: healthy vs greening-affected. Proc Fla State Hort Soc 125:15–19

    Google Scholar 

  • Faralli M, Matthews J, Lawson T (2019) Exploiting natural variation and genetic manipulation of stomatal conductance for crop improvement. Curr Opin Plant Biol 49:1–7

    PubMed  PubMed Central  Google Scholar 

  • Gaikwad KA, Patil SR, Nagree PK, Potdukhe NR (2018) Morphological characterization of citrus rootstock genotypes. Int J Chem Stud 6:516–529

    Google Scholar 

  • Garcia-Lor A, Luro F, Ollitrault P, Navarro L (2015) Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Gene Genom 11:123. https://doi.org/10.1007/s11295-015-0951-1

    Article  Google Scholar 

  • Garcia-Lor LF, Ollitrault P, Navarro (2017) Comparative analysis of collection sampling method for mandarin germplasm based on molecular and phenotypic data. Biol Ann Appl. https://doi.org/10.1111/aaab.12376

    Article  Google Scholar 

  • Georgiou A, Gregoriou C (1999) Growth, yield and fruit quality of shamouti orange on fourteen rootstocks in cypus. SciHort 80:113–121

    Google Scholar 

  • Ghanbari A, Jelodar NB, Rahiman H (2009) Studying of genetic diversity in Satsuma (Citrus unshiu) mandarin utilizing microsatellite markers. Int J Agric Res 4:88–96

    CAS  Google Scholar 

  • Giles JAD, Ferreira ADF, Partelli FL, Aoyama JCR, Ferreira A, Falqueto AR (2019) Divergence and genetic parameters between coffee sp. Genotypes based in foliar morpho-anatomical traits. Sci Hort 245:231–236

    Google Scholar 

  • Gmitter JFG, Hu X (1990) The possible role of Yunnan, China in the origin of contemporary Citrus species (Rutaceae). Econ Bot 44:267–277

    Google Scholar 

  • GomeZ DCM, Ruiz C, Baeza P, Lissarrague JR (2003) Drought adaptation strategies of four grapevine cultivars (Vitisvinifera L.): Modifications of the properties of the leaf area. J Int des Sci de la Vigneet du Vin 37:731–743

    Google Scholar 

  • Gordon DC, Percy KE, Riding RT (1998) Effect of enhanced UV-B radiation on adaxial leaf surface micromorphology and epicuticular wax biosynthesis of sugar maple. Chemosphere 36:853–858

    CAS  Google Scholar 

  • Hardy JP, Anderson VJ, Gardner JS (1995) Stomatal characteristics, conductance ratios, and drought-induced leaf modifications of semiarid grassland species. Am J Bot 82:7

    Google Scholar 

  • Heredia UL, Valbuena-Caraban aM, Co’rdoba M, Gil L (2009) Variation components in leaf morphology of recruits of two hybridising oaks [Q. petraea (Matt.) Liebl. and Q. pyrenaica Willd.] at Small Spatial Scale. Eur J Forest Res 128:543–554

    Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    CAS  PubMed  Google Scholar 

  • Hovenden MJ (2001) The Influence of temperature and genotype on the growth and stomatal morphology of southern beech, Nothofaguscunninghamii (Nothofagaceae). Aus J Bot 49:427–434

    Google Scholar 

  • Hovenden MJ, Schimanski L (2000) Genotypic differences in growth and stomatal morphology of Southem Beech, Nothofagus cunninghamii, exposed to depleted Co2 concentrations. Aust J Plant Physiol 27:281–287

    Google Scholar 

  • Huttunen S, Bytnerowicz A, Arbaugh MJ, Bent K, Karhu M, Tuohimaa P (2014) Diagnostics of Epistomatal Wax of Californian Pine Needles, and Their Association with Ozone-Caused Chlorotic Mottle. Amer J Plant Sci 5(12): 1733–1744, published Online May 2014 in Sci Res. https://www.scirp.org/journal/ajps

  • IPGRI (1999) Descriptors of Citrus. International Plant Genetic Resource Institute. Rome, Italy. (http:/www.cgiar.org/ipgri/)

  • Jaskani MJ, Abbas H, Khan MM, Shahid U, Hussain Z (2006) Morphological description of three potential citrus rootstocks. Pak J Bot 38:311–317

    Google Scholar 

  • Jena SN, Kumar S, Nair NK (2009) Molecular phylogeny in Indian Citrus L (Rutaceae) inferred through PCR-RFLP and trnL-trnF sequence data of chloroplast DNA. Sci Hort 119:403–416

    CAS  Google Scholar 

  • JinPing X, LiGeng C, Ming X, HaiLin L, Wei Qi Y (2009) Identification of AFLP fragments linked to seedlessness in Ponkan mandarin (Citrus reticulata Blanco) and conversion to SCAR markers. Sci Hort 121:505–510

    Google Scholar 

  • Johnson HW, Robinson HF, Comstock RE (1955) Estimates of genetics and environmental variability in soyabean. Agron J 47:314–318

    Google Scholar 

  • Josan JS, Kaur NK (2006) Variability and character association analysis in identified mandarin germplasm. Indian J Hort 63:152–154

    Google Scholar 

  • Kaya A (2011) Morphological, anatomical and trichomes properties of Salvıa wiedemanniiboıss. Endemıc to Turkey. Turk J Pharm Sci 8(3):227–238

    Google Scholar 

  • Khan MM, Mumtaz S, Ahmad S, Abbas M, Khan IA (2008) Some studies on the morphology of Kinnow mandarin and Feutrell’s Early. Pak J Agric Sci 45:424–431

    Google Scholar 

  • Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet 94:701–706

    CAS  Google Scholar 

  • Kim WK, Lee IJ, Kim CS, Lee DK, Park EW (2011) Micromorphology of epicuticular waxes and epistomatal chambers of pine species by electron microscopy and white light scanning interferometry. Microsc Microanal 17:118–124

    CAS  PubMed  Google Scholar 

  • Klimko M, Nowinska R, Wilkin P, Szymanska JW (2018) Comparative leaf micromorphology and anatomy of the dragon tree group of Dracaena (Asparagaceae) and their taxonomic implications. Plant Syst Evol 304:1041–1055

    CAS  Google Scholar 

  • Koehler SP, Dornelles ALC, Freitas LB (2003) Characterization of mandarin citrus germplasm from southern Brazil by morphological and molecular analyses. Pesq Agropec Bras 38:797–806

    Google Scholar 

  • Kumar K, Singh B, Arora PK, Kumar A, Gill JS (2011) Characterization of citrus rootstocks for morphological traits. National seminar on New Frontiers and Future Challenges in Horticulture Crops. Punjab Agricultural University, Ludhiana, Punjab India. p 8 (abstr)

  • Liu TJ, Zhou J-J, Chin-Gen Hu (2018) Identification of the genetic variation and gene exchange between Citrus trifoliata and Citrus clementina. Biom 8(4):182

    Google Scholar 

  • McNeilly T, Ashraf M, Veltkamp C (1987) Leaf micromorphology of sea cliff and inland plants of Agrostissto lonifera L., Dactylisg lomerata L. and Holcusl anatus L. New Phytol 106:261–270

    Google Scholar 

  • Meral N, Tuzcu O, Yeilolu T, Kacar YA, Yıldırım B, Boncuk M, Cimen B (2011) Molecular diversification and preliminary evaluations of some Satsuma selections performance under mediterranean conditions. Afr J Biotechnol 10:4347–4357

    Google Scholar 

  • Metcalfe CR, Chalk L (1979) Anatomy of the dicotyledons, vol 1. In: Systematic anatomy of the leaf and stem, 2nd edn. Oxford Claredon Press, Oxford

  • Metcalfe CR, Chalk L (1988) Anatomy of Dicotyledons, 2nd edn. Oxford University Press, Oxford, pp 97–177

    Google Scholar 

  • Monteverde EE, Ruiz JR, Rodriguez M (2000) Morphological characterization of Caracara orange: vegetative, floral and fruit characteristics. Agron Trop Maracay 50:659–663

    Google Scholar 

  • Munir M, Khan MA, Ahmed M, Bano A, Ahmed SN, Tariq K, Tabassum S, Mukhtar T, Ambreen M, Bashir S (2011) Foliar epidermal anatomy of some ethno botanically important species of wild edible fruits of northern Pakistan. J Med Plant Res 5:5873–5880

    Google Scholar 

  • Nampila R, Choeichaiyaphum C, Ayutthaya SIN, Meetha S, Techawongstein S (2018) Using a chlorophyll meter (SPAD-502) to estimate the total chlorophyll and nitrogen contents in leaves of ‘Manee-Esan’ pummelo. Acta Hort 1208:325–332

    Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water- repellent, self-cleaning plant surfaces. Ann Bot Lond 79:667–677

    Google Scholar 

  • Novelli VM, Cristofani M, Souza AA, Machado MA (2006) Development and characterization of polymorphic simple sequence repeats (SSRs) in sweet orange (Citrus sinensis L. Osbeck). Genet Mol Biol 2(9):90–96

    Google Scholar 

  • Obiremi EO, Oladele FA (2001) Water-conserving stomatal systems in selected Citru sspecies. S Afr J Bot 67(2):258–260

    Google Scholar 

  • Ollitrault F, Terol J, Pina JA, Navarro L, Talon M, Ollitrault P (2010) Development of SSR markers from Citrus clementina (Rutacea) BAC end sequences and interspecific transferability in citrus. Am J Bot 97:124e–129e

    Google Scholar 

  • Osuoha VUN, Mbagwu FN, Inyama CN, Ukpai KU (2015) Stematic characterization of six citrus species using petiole natomy. Med Aromat Plant Sci 1:005. https://doi.org/10.4172/2167-0412.S1-005

    Article  Google Scholar 

  • OueslatiA S-H, Luro F, Vignes H, Mournet P, Ollitrault P (2017) Genotyping by sequencing reveals the interspecific C. maxima / C. reticulata admixture along the genomes of modern citrus varieties of mandarins, tangors, tangelos, orangelos and grapefruits. PLoS ONE 12(10):e0185618. https://doi.org/10.1371/journal.pone.0185618

    Article  CAS  Google Scholar 

  • Padon D, Mossad A, Chiancone B, Germana MA, Khan PSSV (2013) Ploidy levels in Citrus clementine affects leaf morphology, stomatal density and water content. Theor Exp Plant Physiol. https://doi.org/10.1590/S2197-00252013000400006

    Article  Google Scholar 

  • Panse VG (1957) Genetics of quantitative characters in selections to plant breeding. Ind J Genet 17:318–328

    Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software (online). https://darwin.cirad.fr/darwin

  • Petena G, Tanaka FAO, Mesquita GL, Boaretto R, Zambrosi FCB, Quaggio JA, Jr DM (2016) Scanning electron microscopy of leaf and petal cuts of citrus trees fertigated with two nitrogen sources. Citrus Res Technol 37:218–225

  • Rattanpal HS, Singh H, Uppal GS (2018) Genetic divergence in trifoliate citrus rootstocks under sub-tropical conditions of Punjab. J Pharmacogn Phytochem 7:953–957

    Google Scholar 

  • Saeed M, Dodd PB, Sohail L (2010) Anatomical studies of stems, roots and leaves of selected citrus rootstock varieties in relation to their vigour. J Hort For 2:87–94

    Google Scholar 

  • Sayed HA, Ahmed HS, ELezaby AA (2016) Morphological and physiochemical characterization of ten lime and lemon accessions and the assessment of their genetic diversity maintained at ISSR marker. J HortSci Ornam Plant 8:200–211

    Google Scholar 

  • Scora RW (1988) Biochemistry taxonomy and evolution of modern cultivated Citrus. I: Goren R and Mendel K (ed) Proc 6th International Citrus Congr. Vol 1, pp 277–89, Margraf Publishers, Weikersheim, Germany

  • Sharma BD, Hore DK, Gupta SG (2004) Genetic resources of Citrus of north-eastern India and their potential use. Genet Resour Crop Evol 51:411–418

    Google Scholar 

  • Shimizu T, Kitajima A, Nonaka K, Yoshioka T, Ohta S, Goto S, Toyoda A, Fujiyama A, Mochizuki T, Nagasaki H, Kaminuma E, Nakamura Y (2016) Hybrid origins of citrus varieties inferred from DNA marker analysis of nuclear and organelle genomes. PLoS ONE 11(11):e0166969. https://doi.org/10.1371/journal.pone.0166969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson MG (2012) Bitki Sistematigi-Plant Systematic ISBN: 978–605-133-350-2. Ceviri Edt. Zeki Aytac, Noble Yayincilik 448, s. 452, 515. 2012. Ankara

  • Singh G, Aulakh PS, Rattanpal HS (2016a) Genetic divergence of indigenous and exotic mandarin (Citrus reticulata Blanco) accessions based on fruit morphological and physiological traits. Res Crops 17(3):538–544

    Google Scholar 

  • Singh G, Aulakh PS, Sarao NK, Sidhu GS, Rattanpal HS (2016b) Genetic diversity and DNA fingerprinting of indigenous and exotic mandarin genotypes in India using SSR markers. Aust J Crop Sci 10(1):24–31

    Google Scholar 

  • Singh H, Rattanpal HS, Sidhu GS, Chahal TS (2010) Study on physio-morphological characteristics among six Rangpur lime (Citrus limonia Osbeck.) strains. J Tree Sci 29:48–56

    Google Scholar 

  • Singh IP, Singh S (2006) Exploration, collection and characterization of citrus germplasm –a review. Agric Rev 27:79–90

    Google Scholar 

  • Singh S, Bansal ML, Singh TP, Kumar R (1998) Statistical method for research workers. Kalyani Publishers, New Delhi, pp 310–317

    Google Scholar 

  • Solereder H (1908) Systematic anatomy of the dicotyledons, vol 1. Claredon Press, Oxford

    Google Scholar 

  • Soost RK, Roose ML (1996) Citrus. In: Janick J, Moore JN (eds) Fruit breeding tree and tropical fruits, vol I. Wiley, New York, pp 257–323

    Google Scholar 

  • Soriano J, Zuriaga E, Rubio P, Llacer G, Infante R, Badenes M (2012) Development and characterization of microsatellite markers in pomegranate (Punicagranatum L.). Mol Breed 27:119–128

    Google Scholar 

  • Storey R, Treeby MT (1994) The morphology of epicuticular wax and albedo cells of orange fruit in relation to albedo breakdown. J Hort Sci 69:329–338

    Google Scholar 

  • Tanaka T (1977) Fundamental discussion of Citrus classification. Stud Citrologia 14:1–6

    Google Scholar 

  • Waldhoff D (2003) Leaf structure in trees of Central Amazonian floodplain forests (Brazil). Amazoniana 17:451–469

    Google Scholar 

  • Waldhoff D, Furch B (2002) Leaf morphology and anatomy in eleven tree species from Central Amazonian floodplains (Brazil). Amazoniana 17:79–94

    Google Scholar 

  • Wang S, Tu H, Wan J, Chen W, Liu X, Luo J, Xu J (2016) Hongyan Zhang Spatio-temporal distribution and natural variation of metabolites in citrus fruits. Food Chem 199:8–17

    CAS  PubMed  Google Scholar 

  • Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E, Borredá C, Domingo C, Tadeo R, Carbonell-Caballero J, Alonso RF, Curk F, Du D, Ollitrault P, Roose M L, Dopazo J, Gmitter G Jr, RokhsarTalon FM (2018) Genomics of the origin and evolution of Citrus. Nature. https://doi.org/10.1038/nature25447

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu GA et al (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaly MC, Novelli VM, Bastianel M, Machado MA (2011) Transferability and level of heterozygosity of microsatellite markers in citrus species. Plant Mol Biol Rep 29:418–423

    Google Scholar 

  • Zuliani AMOG, Cardoso KAK, Junior JB, Zanutto CA, Hashiguti HT, Bock CH, Nakamura CV, Nunes WMC (2016) Reaction of detached leaves from different varieties of sweet orange to inoculation with Xanthomonas citri sub sp. citri. Summa Phytopatho Botucatu 42:125–133

    Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Project Coordinator, All India Coordinated Research Project on Fruits and ICAR, for providing funding for the maintenance the mandarin germplasm in field gene bank of PAU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurteg Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Singh, G., Kalia, A. et al. Leaf morpho-anatomical diversity analysis in mandarin (Citrus reticulata Blanco) genotypes using scanning electron microscopy. Genet Resour Crop Evol 67, 2173–2194 (2020). https://doi.org/10.1007/s10722-020-00972-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00972-x

Keywords

Navigation