Skip to main content
Log in

Production and phenotypic characterization of nascent synthetic decaploids derived from interspecific crosses between a durum wheat cultivar and hexaploid Aegilops species

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Wheat and its relatives include some allopolyploid species such as Aegilops juvenalis (Thell.) Eig (DDMMUU) and Aegilops vavilovii (Zhuk.) Chenn. (DDMMSS). Here, we successfully produced for the first time three allodecaploid lines with the AABBDDMMUU and AABBDDMMSS genomes through interspecific crosses between a tetraploid wheat cultivar and the two Aegilops species. Spike architecture of the synthetic lines showing a brittle rachis phenotype strongly resembled that of the parental hexaploid Aegilops species, but not that of the parental tetraploid wheat. Phenotypic differences of the spike and spikelet morphology were caused by one of the parental Aegilops species. Glumes of the synthetic decaploids were extremely hard, and all three synthetic lines had a soft texture with a smooth starch surface in endosperm cells. The soft-textured grains of the synthetic decaploids were due to accumulation of the puroindoline proteins derived from the genomes of parental allohexaploid Aegilops species. Therefore, the nascent synthetic decaploid lines highly reflect the phenotypic characteristics of the pollen parents. With further wheat breeding, the synthetic decaploids could have great potential to improve various traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Abdolmalaki Z, Mirzaghaderi G, Mason AS, Badaeva ED (2019) Molecular cytogenetic analysis reveals evolutionary relationships between polyploid Aegilops species. Plant Syst Evol 305:459–475

    Google Scholar 

  • Adamski NM, Bush MS, Simmonds J, Tumer AS, Mugford SG, Jones A, Findlay K, Pedentchouk N, von Wettstein-Knowles P, Uauy C (2013) The inhibitor of wax 1 locus (Iw1) prevents formation of ß- and OH-ß-diketones in wheat cuticular waxes and maps to a sub-cM on chromosome arm 2BS. Plant J 74:989–1002

    CAS  PubMed  Google Scholar 

  • Alix K, Gérard P, Schwarzacher T, Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120:183–194

    PubMed  PubMed Central  Google Scholar 

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan KW, Golan G, Deek J, Ben-Zvi B, Ben-Zvi G, Himmelbach A, MacLachlan RP, Sharpe AG, Fritz A, Ben-David R, Budak H, Fahima T, Korol A, Faris JD, Hernandez A, Mikel MA, Levy AA, Steffenson B, Maccaferri M, Tuberosa R, Catttivelli L, Faccioli P, Ceriotti A, Kashkush K, Pirkheirandish M, Komatsuda T, Eilam T, Sela H, Sharon A, Ohad N, Chamovitz DA, Mayer KFX, Stein N, Ronen G, Peleg Z, Pozniak CJ, Akhunov ED, Distelfeld A (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

    CAS  PubMed  Google Scholar 

  • Bechtel DB, Wilson JD (2003) Amyloplast formation and starch granule development in hard red winter wheat. Cereal Chem 80:175–183

    CAS  Google Scholar 

  • Cabi E, Dogan M (2009) A first vouchered wild record for the flora of Turkey: Aegilops juvenalis (Thell.) Eig (Poaceae). Turk J Bot 33:447–452

    Google Scholar 

  • Cabi E, Dogan M, Özler H, Akaydin G, Karagöz A (2010) Taxonomy, morphology and palynology of Aegilops vavilovii (Zhuk.) Chennav. (Poaceae: Triticeae). Afr J Agric Res 5:2841–2849

    Google Scholar 

  • Chen M, Wilkinson M, Tosi P, He G, Shewry P (2005) Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes. Theor Appl Genet 111:1159–1166

    CAS  PubMed  Google Scholar 

  • Chen ZJ, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays 28:240–252

    PubMed  Google Scholar 

  • Chia T, Adamski NM, Saccomanno B, Greenland A, Nash A, Uauy C, Trafford K (2017) Transfer of a starch phenotype from wild wheat to bread wheat by deletion of a locus controlling B-type starch granule content. J Exp Bot 68:5497–5509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399

    CAS  PubMed  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    CAS  PubMed  Google Scholar 

  • Cuesta S, Guzmán C, Alvarez JB (2013) Allelic diversity and molecular characterization of puroindoline genes in five diploid species of the Aegilops genus. J Exp Bot 64:5133–5143

    CAS  PubMed  Google Scholar 

  • Dale Z, Jie H, Cancan Z, Yun Z, Yarui S, Suoping L (2017) An advanced backcross population through synthetic octaploid wheat as a “bridge”: development and QTL detection for seed dormancy. Front Plant Sci 8:2123

    PubMed  PubMed Central  Google Scholar 

  • Dvorak J, Deal KR, Luo MC, You FM, von Borstel K, Dehghani H (2012) The origin of spelt and free-threshing hexaploid wheat. J Heredity 103:426–441

    CAS  Google Scholar 

  • Edet OU, Gorafi Y, Nasuda S, Tsujimoto H (2018) DArTseq-based analysis of genomic relationships among species of tribe Triticeae. Sci Rep 8:16397

    PubMed  PubMed Central  Google Scholar 

  • Gautier MF, Cosson P, Guirao A, Alary R, Joudrier P (2000) Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci 153:81–91

    CAS  Google Scholar 

  • Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci USA 95:6262–6266

    CAS  PubMed  Google Scholar 

  • Howard T, Rejab NA, Griffiths S, Leigh F, Leverington-Waite M, Simmonds J, Uauy C, Trafford K (2011) Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J Exp Bot 62:2217–2228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Feurtado JA, Smith MA, Flatman LK, Koh C, Cutler AJ (2017) Long noncoding miRNA gene repress wheat ß-diketone wax. Proc Natl Acad Sci USA 114:E3149–E3158

    CAS  PubMed  Google Scholar 

  • Iehisa JCM, Takumi S (2012) Variation in abscisic acid responsiveness Aegilops tauschii and hexaploid wheat synthetics due to the D-genome diversity. Genes Genet Syst 87:9–18

    CAS  PubMed  Google Scholar 

  • Ikeda TM, Ohnishi N, Nagamine T, Oda S, Hisatomi T, Yano H (2005) Identification of new puroindolin genotypes and their relationship to flour texture among wheat cultivars. J Cereal Sci 41:1–6

    CAS  Google Scholar 

  • Jones H, Gosman N, Horsnell R, Rose GA, Everest LA, Bentley AR, Tha S, Uauy C, Kowalski A, Novoselovic D, Simek R, Kobijski B, Kondic-Spika A, Brbaklic L, Mitrofanova O, Chesnokov Y, Bonnett D, Greenland A (2013) Strategy for exploiting exotic germplasm using genetic, morphological, and environmental diversity: the Aegilops tauschii Coss. example. Theor Appl Genet 126:1793–1808

    CAS  PubMed  Google Scholar 

  • Kajimura T, Murai K, Takumi S (2011) Distinct genetic regulation of flowering time and grain-filling period based on empirical study of D-genome diversity in synthetic hexaploid wheat lines. Breed Sci 61:130–141

    Google Scholar 

  • Kishii M (2019) An update of recent use of Aegilops species in wheat breeding. Front Plant Sci 10:585

    PubMed  PubMed Central  Google Scholar 

  • Kumar N, Orenday-Ortiz JM, Kiszonas AM, Boehm JD Jr, Morris CF (2019) Genetic analysis of a unique ‘super soft’ kernel texture phenotype in soft white spring wheat. J Cereal Sci 85:162–167

    Google Scholar 

  • Leonard JM, Watson CJ, Carter AH, Hansen JL, Zemetra RS, Santra DK, Campbell KG, Riera-Lizarazu OJT, Genetics A (2008) Identification of a candidate gene for the wheat endopeptidase Ep-D1 locus and two other STS markers linked to the eyespot resistance gene Pch1. Theor Appl Genet 116:261–270

    CAS  PubMed  Google Scholar 

  • Li A, Liu D, Yang W, Kishii M, Mao L (2018) Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering 4:552–558

    CAS  Google Scholar 

  • Li Q, Ye H, Yang Q, Jiang S (2003) Relationship between several biochemical indexes and resistance of Aegilops species to oat-bird cherry aphids (Homoptera: Aphididae). Agric Sci China 2:994–999

    Google Scholar 

  • Li X, Ma W, Gao L, Zhang Y, Wang A, Ji K, Wang K, Appels R, Yan Y (2008) A novel chimeric low-molecular-weight glutenin subunit gene from the wild relatives of wheat Aegilops koschyi and Ae. juvenalis: evolution at the Glu-3 loci. Genetics 180:93–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longin CF, Reif JC (2014) Redesigning the exploitation of wheat genetic resources. Trends Plant Sci 19:631–636

    CAS  PubMed  Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1997) Resistance to stripe rust in durum wheats, A-genome diploids, and their amphiploids. Euphytica 94:279–286

    Google Scholar 

  • Matsuoka Y (2011) Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52:750–764

    CAS  PubMed  Google Scholar 

  • Matsuoka Y, Nasuda S (2004) Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid formation in allohexaploid wheat speciation. Theor Appl Genet 109:1710–1717

    PubMed  Google Scholar 

  • Maxted N, White K, Valkoun J, Konopka J, Hargreaves S (2008) Towards a conservation strategy for Aegilops species. Plant Genetic Resour 6:126–141

    Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:107–116

    Google Scholar 

  • McNeil D, Lagudah ES, Hohmann U, Appels R (1994) Amplification of DNA sequencings in wheat and its relatives: the Dgas44 and R350 families of repetitive sequences. Genome 37:320–327

    CAS  PubMed  Google Scholar 

  • Megyeri M, Mikó P, Molnár I, Kovács G (2011) Development of synthetic amphiploids based on Triticum turgidum x T. monococcum crosses to improve the adaptability of cereals. Acta Agron Hung 59:267–274

    Google Scholar 

  • Mikó P, Megyeri M, Farkas A, Molnár I, Molnár-Láng M (2015) Molecular cytogenetic identification and phenotypic description of a new synthetic amphiploidy, Triticum timococcum (AtAtGGAmAm). Genet Resour Crop Evol 62:55–66

    PubMed  Google Scholar 

  • Mirzaghaderi G, Mason AS (2019) Broadening the bread wheat D genome. Theor Appl Genet 132:1295–1307

    CAS  PubMed  Google Scholar 

  • Moore G (2015) Strategic pre-breeding for wheat improvement. Nat Plants 1:15018

    CAS  PubMed  Google Scholar 

  • Mujeeb-Kaji A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat x T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol 43:129–134

    Google Scholar 

  • Nishijima R, Iehisa JCM, Matsuoka Y, Takumi S (2014) The cuticular wax inhibitor locus Iw2 in wild diploid wheat Aegilops tauschii: phenotypic survey, genetic analysis, and implications for the evolution of common wheat. BMC Plant Biol 14:246

    PubMed  PubMed Central  Google Scholar 

  • Okada M, Ikeda TM, Yoshida K, Takumi S (2018a) Effect of the U genome on grain hardness in nascent synthetic hexaploids derived from interspecific hybrids between durum wheat and Aegilops umbellulata. J Cereal Sci 83:153–161

    CAS  Google Scholar 

  • Okada M, Yoshida K, Nishijima R, Michikawa A, Sato K, Takumi S (2018b) RNA-seq analysis reveals considerable genetic diversity and provides genetic markers saturating all chromosomes in the diploid wild wheat relative Aegilops umbellulata. BMC Plant Biol 18:271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okada M, Michikawa A, Nagaki K, Ikeda TM, Yoshida K, Takumi S (2020) Production and phenotypic characterization of synthetic allohexaploids derived from interspecific crosses between durum wheat and its diploid relative Aegilops umbellulata. PLoS ONE 15:e0231129. https://doi.org/10.1371/journal.pone.0231129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto Y, Kajimura T, Ikeda TM, Takumi S (2012) Evidence from principal component analysis for improvement of grain shape- and spikelet morphology-related traits after hexaploid wheat speciation. Genes Genet Syst 87:299–310

    CAS  PubMed  Google Scholar 

  • Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He Z, Rajaram S (2018) Wheat genetic resources in the post-genomics era: promise and challenges. Ann Bot 121:603–616

    CAS  PubMed  Google Scholar 

  • Sakaguchi K, Nishijima R, Iehisa JCM, Takumi S (2016) Fine mapping and genetic association analysis of Net2, the causative D-genome locus of low temperature-induced hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Genetica 144:523–533

    PubMed  Google Scholar 

  • Sehgal SK, Kaur S, Gupta S, Harma A, Kaur R, Bains NS (2011) A direct hybridization approach to gene transfer from Aegilops tauschii Coss. to Triticum aestivum L. Plant Breed 130:98–100

    CAS  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Franks C, Huang L, Brown-Guedira G, Marshall D, Gill B, Fritz A (2004) Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    CAS  PubMed  Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    CAS  PubMed  Google Scholar 

  • Stoddard FL, Sarker R (2000) Characterization of starch in Aegilops species. Cereal Chem 77:445–447

    CAS  Google Scholar 

  • Takumi S, Naka Y, Morihiro H, Matsuoka Y (2009) Expression of morphological and flowering time variation through allopolyploidization: an empirical study with 27 wheat synthetics and their parental Aegilops tauschii accessions. Plant Breed 128:585–590

    Google Scholar 

  • Takumi S, Mitta S, Komura S, Ikeda TM, Matsunaka H, Sato K, Yoshida K, Murai K (2020) Introgression of chromosomal segments conferring early heading date from wheat diploid progenitor, Aegilops tauschii Coss., into Japanese elite wheat cultivars. PLoS ONE 15:e0228397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabata T, Shibaya T, Hori K, Ebana K, Yano M (2012) SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol 160:1871–1880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Yosida K, Sato K, Takumi S (2020) Diploid genome differentiation conferred by RNA sequencing-based survey of genome-wide polymorphisms throughout homoeologous loci in Triticum and Aegilops. BMC Genomics 21:246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vikas V, Sivasamy M, Kumar J, Jayaprakash P, Kumar S, Parimalan R, Kmar A, Srinivasa K, Radhamani J, Jacob SR (2014) Stem and leaf rust resistance in wild relatives of wheat with D genome (Aegilops spp.). Genet Resour Crop Evol 61:861–874

    CAS  Google Scholar 

  • Yanaka M, Takata K, Terasawa Y, Ikeda TM (2011) Chromosome 5H of Hordeum species involved in reduction in grain hardness in wheat genetic background. Theor Appl Genet 123:1013–1018

    PubMed  Google Scholar 

  • Yokota H, Iehisa JCM, Shimosaka E, Takumi S (2015) Line differences in Cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids. J Plant Physiol 176:78–88

    CAS  PubMed  Google Scholar 

  • Zhang D, Zhou Y, Zhao X, Lv L, Zhang C, Li J, Sun G, Li S, Song C (2018) Development and utilization of introgression lines using synthetic octaploid wheat (Aegilops tauschii x hexaploid wheat) as donor. Front Plant Sci 9:1113

    PubMed  PubMed Central  Google Scholar 

  • Zohary D, Feldman M (1962) Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16:44–61

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Kanenori Takata at the Western Region Agricultural Research Center of NARO for his help in measuring grain hardness. We also thank Dr. Atsushi Torada at the HOKUREN Agricultural Research Institute for teaching us the method of colchicine treatment. This work was supported by a Grant-in-Aid for Scientific Research (B) No. 16H04862 from MEXT, by Scientific Research on Innovative Areas No. 19H04863 from MEXT, and by a grant from Iijima foundation to ST No. 2018-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Takumi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takumi, S., Tanaka, S., Yoshida, K. et al. Production and phenotypic characterization of nascent synthetic decaploids derived from interspecific crosses between a durum wheat cultivar and hexaploid Aegilops species. Genet Resour Crop Evol 67, 1905–1917 (2020). https://doi.org/10.1007/s10722-020-00949-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00949-w

Keywords

Navigation