Skip to main content
Log in

Core collection construction and evaluation of the genetic structure of Glycyrrhiza in China using markers for genomic simple sequence repeats

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Glycyrrhiza is a widely used traditional Chinese herb with medicinal values. In order to avoid handling a large number of collections with redundant genetic information, it is necessary to construct a core collection with minimal accessions and maximal genetic diversity. In this study, the initial collection consisted of 736 accessions from four species, each of which was analyzed using SSR markers. The advanced M (maximization) strategy of PowerCore was utilized to select 124 accessions for the core collection. The core collection retained 100% of the alleles of the initial collection, and there was no significant difference regarding the genetic diversity parameters compared to the initial collection. PCoA and AMOVA also showed that the core collection has a similar genetic distribution. NJ and STRUCTURE analyses showed that the core collection can be divided into three groups: The first group is represented by the majority of Glycyrrhiza uralensis Fisch.; the second group is represented by Glycyrrhiza inflata Batalin and Glycyrrhiza glabra L.; and finally, the third group is represented by Glycyrrhiza pallidiflora Maxim. The results indicate that the core collection is an effective tool for representing the genetic diversity of the initial collection. The core collection also provides a useful primary resource to improve the conservation of genetic diversity and to improve Glycyrrhiza breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brown AHD (1995) Core collections of plant genetic resources. Wiley-Sayce Publication, London, pp 3–19

    Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Google Scholar 

  • Bu HD, Zhang BB (2010) Research progress of fruit tree core collection. Northern Hortic 4:211–213

    Google Scholar 

  • Campoy JA, Lerigoleur-Balsemin E, Christmann H, Beauvieux R, Girollet N, Quero-García J, Dirlewanger E, Barreneche T (2016) Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars. BMC Plant Biol 16:49

    PubMed  PubMed Central  Google Scholar 

  • Chandra S, Huaman Z, Hari Krishna S, Ortiz R (2002) Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data—a simulation study. Theor Appl Genet 104:1325–1334

    CAS  PubMed  Google Scholar 

  • China Pharmacopoeia Committee (2015) Pharmacopoeia of People's Republic of China, vol 1. China Medical Science and Technology Press, Beijing, pp 86–87 (in Chinese)

    Google Scholar 

  • Cipriani G, Spadotto A, Jurman I et al (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 121(8):1569–1585

    PubMed  Google Scholar 

  • Chen F, Wang A, Chen K, Wan D, Liu J (2009) Genetic diversity and population structure of the endangered and medically important Rheum tanguticum (Polygonaceae) revealed by SSR markers. Biochem Syst Ecol 37:613–621

    CAS  Google Scholar 

  • Chen R, Hara T, Ohsawa R, Yoshioka Y (2017) Analysis of genetic diversity of rapeseed genetic resources in Japan and core collection construction. Breed Sci 67(3):239–247

    PubMed  PubMed Central  Google Scholar 

  • Deng SC, Tian YP, Li YY, Duan ZF, Jiang HB, Bao YX, Pu SL, Sun XM, Liu BY, Wang YG, Zhao CM (2015) Research progress of core germplasm of tea tree resources. Chin Agric Sci Bull 31(16):121–126 (in Chinese)

    Google Scholar 

  • De Lafontaine G, Ducousso A, Lefèvre S, Magnanou E, Petit RJ (2013) Stronger spatial genetic structure in recolonized areas than in refugia in the European beech. Mol Ecol 22:4397–4412

    PubMed  Google Scholar 

  • Earl DA, Vonholdt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Frankel OH, Brown AHD (1984) Plant genetic resources today: a critical appraisal. In: Holden JHW, Williams JT (eds) Crop genetic resources: conservation and evaluation. George Allan and Unwin, London, pp 249–257

    Google Scholar 

  • Frankle OH (1984) Genetic perspectives of germplasm conservation. Cambridge University Press, Cambridge, pp 161–170

    Google Scholar 

  • Ge SJ, Li GM, Ma ZY, Wu XY, Meng YJ, Huo YQ (2009) Analysis on genetic diversity of wild populations of licorice (Glycyrrhiza uralensis Fisch) with AFLP markers. Sci Agric Sin 42(01):47–54 (in Chinese)

    CAS  Google Scholar 

  • Heinken T, Weber E (2013) Consequences of habitat fragmentation for plant species: do we know enough? Perspect Plant Ecol Evol Syst 15:205–216

    Google Scholar 

  • Hodgkin T (1994) Core collection and conservation of genetic resources. In: Arora RK, Riley KW (eds) Sesame bio-diversity in Asia, conservation, evaluation and improvement. New Delhi, pp 41–51

  • Holbrook CC, Anderson WF, Pittman RN (1993) Selection of a core collection from the U.S. germplasm collection of peanut. Crop Sci 33:859–861

    Google Scholar 

  • Hu J, Xu HM, Zhu J (2000) Construction of core library of crop germplasm resources by multiple cluster method of genotypic value. J Biomath 1:103–109 (in Chinese)

    Google Scholar 

  • Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG, Kim TS, Cho EG, Park YJ (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23:2155–2162

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li HG (2017) Genetic diversity analysis, core collection construction and molecular identification of Eucommia ulmoides oliver. Chinese Academy of Forestry, Beijing (in Chinese)

    Google Scholar 

  • Li HG, Xu JH, Du HY, Wuyun TN, Liu PF, Du QX (2018) Preliminary construction of core collection of Eucommia ulmoides based on allele number maximization strategy. Sci Silvae Sin 54(2):42–51 (in Chinese)

    Google Scholar 

  • Li XL, Lu JH, Xie LB, Zhang AX, Chen XC, Li XY (2015) Development of EST-SSR primers and genetic relationship analysis in four Glycyrrhiza L. Species. Acta Bot Boreali-Occidentalia Sin 35(3):480–485 (in Chinese)

    CAS  Google Scholar 

  • Liu J, Liao K, Mansur N, Cao Q, Jing ZB, Jia Y (2015a) Core-germplasm construction of apricot collections in South of Xinjiang by ISSR molecular markers. J Fruit Sci 32(3):374–384 (in Chinese)

    CAS  Google Scholar 

  • Liu X, Hou W, Dou D (2017) The mealiness and quality of herbal medicine: licorice for example. Pharmacognosy Res 9(2):151–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu RX (2016) Study on construction of Scutellaria baicalensis core collection and screening of excellent Germplasm. Beijing University of Chinese Medicine, Beijing (in Chinese)

    Google Scholar 

  • Liu YL, Zhang PF, Song ML, Hou JL, Qing M, Wang WQ, Liu CS (2015b) Transcriptome analysis and development of SSR molecular markers in Glycyrrhiza uralensis Fisch. PLoS ONE 11:1–12

    Google Scholar 

  • Liu YY, Liu CS, Zeng BF, Fan BD, Li PS, Xu TH, Liu TH (2013) Research progress on germplasm resources of Glycyrrhizae Radix et Rhizoma. Chin Tradit Herb Drugs 44(24):3593–3598 (in Chinese)

    CAS  Google Scholar 

  • Luan MB, Chen YM, Wang XF, Xu Y, Sun ZM, Chen JH, Wang JS (2018) Core collection of ramie comprising 1151 germplasms based on simple sequence repeats and phenotypic markers. Braz J Bot 41:859–866

    Google Scholar 

  • Liu MM (2012) Genetic diversity analysis and core germplasm construction of ISSR from Scutellaria baicalensis. Shaanxi Normal University, Shaanxi (in Chinese)

    Google Scholar 

  • Liu J (2015) Analysis of genetic diversity and establishment of core collection of apricot Germplasm resources in XinJing. Xinjing Agricultural University, Xinjing (in Chinese)

    Google Scholar 

  • Mckhann HI, Camilleri C, Bérard A, Bataillon T, David JL, Reboud X, LeCorre V, Caloustian C, Gut IG, Brunel D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38(1):193–202

    CAS  PubMed  Google Scholar 

  • Ma CY, Qu P, Wang WQ (2011a) Identification of pollen ultrastructure and fluorescence microscope observation of pollen viability and stigma activity of liquorice. J Plant Genet Resour 12(3):396–401 (in Chinese)

    Google Scholar 

  • Meng XS (2018) Correlation analysis between effective components and genetic diversity of ISSR and ITS markers in Astragalus membranaceus. Ningxia University, Yinchuan (in Chinese)

    Google Scholar 

  • Ma C, Liu C, Wang W (2011b) Molecular cloning and characterization of GuHMGR, an HMG-CoA reductase gene from liquorice (Glycyrrhiza uralensis). Front Agric China 5:400–406 (in Chinese)

    PubMed  PubMed Central  Google Scholar 

  • Nevo E, Beiles A (1989) Genetic diversity in the desert: patterns and testable hypotheses. J Arid Environ 17:241–244

    Google Scholar 

  • Ortiz R, Ruiz-Tapia EN, Mujica-Sanchez A (1998) Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor Appl Genet 96:475–483

    CAS  PubMed  Google Scholar 

  • Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L (2013) Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol 22:5983–5999

    PubMed  Google Scholar 

  • Palme AE, Su Q, Palsson S, Lascoux M (2004) Extensive sharing of chloroplast haplotypes among European birches indicates hybridization among Betula pendula, B. pubescens and B. nana. Mol Ecol 13(1):167–178

    CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shen Z, Ma LY, Ao Y, Duan J (2017) Analysis of the genetic diversity and construction of core collection of Xanthoceras sorbifolia Bunge. Using microsatellite marker data. Mol Plant Breed 15(08):3341–3350 (in Chinese)

    Google Scholar 

  • Su W, Wang L, Lei J, Chai S, Liu Y, Yang Y, Yang X, Jiao C (2017) Genome-wide assessment of population structure and genetic diversity and development of a core germplasm set for sweet potato based on specific length amplified fragment (SLAF) sequencing. PLoS ONE 12(2):e0172066. https://doi.org/10.1371/journal.pone

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun ZR, Wang WQ, Zhang JS, Lv YX, Zhang RF (2007) Seed biological characteristics and seedling growth in Glycyrrhiza uralensis from two provenances in Mongolia. Chin Tradit Herb Drugs 38(1):108–113 (in Chinese)

    Google Scholar 

  • Sun SY (2017) Study on drought resistance and diversity of Astragali Radix germplasm resources. Inner Mongolia University, Hohhot (in Chinese)

    Google Scholar 

  • Wang Q, Li J, Simayi H (2018) Utilization status and protection measures for licorice resources in Xinjiang. Grass-Feeding Livest 2:52–56 (in Chinese)

    Google Scholar 

  • Wu Y (2017) Genetic diversity analysis and establishment of the core collection of pepper germplasm resources based on SRAP, SSR Makers. Jiangxi Agricultural University, Jiangxi (in Chinese)

    Google Scholar 

  • Yang L, Chen J, Hu W, Yang T, Zhang Y, Yukiyoshi T, Zhou Y, Wang Y (2016) Population genetic structure of Glycyrrhiza inflata B. (Fabaceae) is shaped by habitat fragmentation, water resources and biological characteristics. PLoS ONE 11(10):e0164129. https://doi.org/10.1371/journal.pone.0164129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Shanxi Province of China (201901D111217), the National Natural Science Foundation of China (31400285) and the China Herbal Medicine Standardization Production Technology Service Platform [ministry of consumption (2011) 340].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junling Hou or Wenquan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

Our manuscript is our original research work and academically satisfies all moral and ethical standards, without any plagiarism or false data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Geng, Y., Xie, X. et al. Core collection construction and evaluation of the genetic structure of Glycyrrhiza in China using markers for genomic simple sequence repeats. Genet Resour Crop Evol 67, 1839–1852 (2020). https://doi.org/10.1007/s10722-020-00944-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00944-1

Keywords

Navigation