Skip to main content
Log in

Characterization of genetic variation and antioxidant properties in strawberry (Fragaria × ananassa Duch.) mutant genotypes

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Strawberry (Fragaria × ananassa Duch.) is an important fruit in the food industry. Recently, several strawberry mutant genotypes with improved agronomic traits have been developed using gamma irradiation and somaclonal variation mutagenesis. This study was conducted to examine the genetic diversity and variation among 19 novel strawberry genotypes and 3 commercial strawberry cultivars using single nucleotide polymorphism (SNP) markers generated from genotyping-by-sequencing (GBS) analysis. In addition, the bio-functional compounds of the various strawberry genotypes were examined to determine the fruit’s potential for additional uses in the food industry. Using GBS sequencing data, a total of 506,916,648 clean data reads were generated, with 376,723,429 (74.3%) mapped reads. A set of 55,733 filtered SNPs was used to perform a phylogenetic analysis, which showed that there were clear differences among the strawberry genotypes based on their original cultivar, except for two mutant genotypes. The ellagic acid levels of 22 strawberry genotypes ranged from 1.71 to 12.10 mg/100 g with an average of 4.36 mg/100 g. Pelargonidin-3-glucoside was the major anthocyanin in 17 strawberry genotypes; however, cyanidin-3-glucoside was the major anthocyanin in two purple flower genotypes. Anthocyanin pigments were not detectable in the three white fruit genotypes. This study demonstrated that the SNPs and functional compound content are an efficient tool for mutant screening and for the selection of elite genotypes in strawberry breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NGS:

Next-generation sequencing

SNPs:

Single nucleotide polymorphisms

GBS:

Genotyping-by-sequencing

GO:

Gene ontology

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil NV, Davis TM, Zhang H et al (2015) Development and preliminary evaluation of a 90 K Axiom SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa. BMC Genom 16:1

    Article  Google Scholar 

  • Chen JX, Mao LC, Lu WJ, Ying TJ, Luo ZS (2016) Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. Planta 243(1):183–197

    Article  CAS  PubMed  Google Scholar 

  • Chung JD, Lee JE, Suh DH, Yeon IK, Do HW, Choi DW (2010) ‘Ssanta’, a new high quality strawberry cultivar. Korea J Hortic Sci Technol 30(S2):85

    Google Scholar 

  • Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform 11:485

    Article  Google Scholar 

  • Crecente-Campo J, Nunes-Damaceno M, Romero-Rodriguez MA, Vazquez-Oderiz ML (2012) Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria × ananassa Duch, cv Selva). J Food Compos Anal 28:23–30

    Article  CAS  Google Scholar 

  • Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Edger PP, VanBuren R, Colle M et al (2018) Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. GigaScience 7:1–7

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloSone 6:e19379

    Article  CAS  Google Scholar 

  • FAO/IAEA (2018) Manual on mutation breeding, 3rd edn. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fredericks CH, Fanning KJ, Gidley MJ, Netzel G, Zabaras D, Herrington M, Netzel M (2012) High-anthocyanin strawberries through cultivar selection. J Sci Food Agric 93:846–852

    Article  PubMed  Google Scholar 

  • He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirakawa H, Shirasawa K, Kosugi S et al (2014) Dissection of the octoploid strawberry genome by deep Sequencing of the genomes of Fragaria species. DNA Res 21:169–181

    Article  CAS  PubMed  Google Scholar 

  • Jeong HJ, Choi HG, Moon BY, Cheong JW, Kang NJ (2016) Comparative analysis of the fruit characteristics of four strawberry cultivars commonly grown in South Korea. Korean J Hortic Sci Technol 34:396–404

    CAS  Google Scholar 

  • Kasumi M (2002) The effects of gamma-ray irradiation to strawberry (Fragaria × ananassa Duch.) calli on shoot regeneration achene formation and morphological variation of regenerant. J Jpn Soc Hortic Sci 71:419–423

    Article  Google Scholar 

  • Kim JE, Oh SK, Lee JH, Lee BM, Jo SH (2014) Genome-wide SNP calling using next generation sequencing data in tomato. Mol Cells 37:36–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lee SY, Kim D, Lee ES, Lee HE, Han K, Kang BC (2019) Genotyping of octoploid strawberry inbred lines by SNP discovery using genotyping-by-sequencing. Hortic Environ Biotechnol 60:69–80

    Article  CAS  Google Scholar 

  • Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next generation sequencing and its applications. Int J Plant Genom 2012:831460

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JN, Kim HJ, Kim KD, Yoo DL, Suh JT (2012) Characteristics of new ever-bearing strawberry ‘Gwanha’ cultivar for ornamental horticulture. Korean J Hortic Sci Technol 30(6):784–787

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Maas JL, Wang SY, Galletta GJ (1991) Evaluation of strawberry cultivars for ellagic acid content. Hortic Sci 26:66–68

    Google Scholar 

  • Mahoney LL, Sagent DJ, Abebe-Akele F, Wood DJ, Ward JA, Bassil NV, Hancock JF, Folta KM, Davis TM (2016) A high-density linkage map of the ancestral diploid strawberry, Fragaria iinumae, constructed with single nucleotide polymorphism markers from the IStraw90 array and genotyping by sequencing. Plant Genome 9:1–14

    Article  CAS  Google Scholar 

  • Martin M (2011) Cut adapt removes adapter sequences from high-throughput sequencing reads. EMB Net J 17:10–12

    Article  Google Scholar 

  • Murti RH, Kim HY, Yeoung YR (2013) Effectiveness of gamma ray irradiation and ethyl methane sulphonate on in vitro mutagenesis of strawberry. Afr J Biotechnol 12:4803–4812

    Article  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    CAS  Google Scholar 

  • Rho IR, Woo JG, Jeong HJ, Jeon HY, Lee CH (2012) Characteristics of F1 hybrids and inbred lines in octoploid strawberry (Fragaria × ananassa Duchesne). Plant Breed 131:550–554

    Article  Google Scholar 

  • Ryu J, Kim WJ, Im J, Kim SH, Oh SC, Cho L, Kang SY, Ha BK (2017) Study of transferability of Rubus microsatellite markers to hybrid boysenberry. Plant Breed Biotechnol 5:253–260

    Article  Google Scholar 

  • Ryu J, Kim WJ, Im J, Kim SH, Lee KS, Jo HJ, Kim EY, Kang SY, Lee JH, Ha BK (2018) Genotyping-by-sequencing based single nucleotide polymorphisms enabled Kompetitive Allele Specific PCR marker development in mutant Rubus genotypes. Electron J Biotechnol 35:57–62

    Article  CAS  Google Scholar 

  • Ryu J, Kim WJ, Im J, Kang KW, Kim SH, Jo YD, Kang SY, Lee JH, Ha BK (2019) Single nucleotide polymorphism (SNP) discovery through genotyping-by-sequencing (GBS) and genetic characterization of Dendrobium mutants and cultivars. Sci Hortic 244:225–253

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Salunkhe SK (1961) Gamma radiation effect on fruits and vegetable. Econ Bot 15:28–56

    Article  Google Scholar 

  • Samad S, Kurokura T, Koskela E, Toivaninen T, Patel V, Mouhu K, Sargent DJ, Hytonen T (2017) Additive QTLs on three chromosomes control flowering time in woodland strawberry (Fragaria vesca L.). Hotic Res 4:17020

    Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. International Atomic Energy Agency (IAEA); Food and Agriculture Organization of the United Nations (FAO). CABI, Wallingford, UK, Cambridge, MA

  • Shulaev V, Sargent DJ, Crowhurst RN et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS 101:11030–11035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tennessen JA, Govindarajulu R, Liston A, Ashman TL (2016) Homomorphic ZW chromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex-determining region. New Phytol 211:1412–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vining KJ, Salinas N, Tennessen JA, Zurn JD, Sargent DJ, Hancock J, Bassil NV (2017) Genotyping-by-sequencing enables linkage mapping in three octoploid cultivated strawberry families. PeerJ 5:e3731

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang SY, Jiao H (2000) Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals and singlet oxygen. J Agric Food Chem 48:5677–5684

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Zhao M, Wang Z, Qian Y, Yuan J (2009) The study of the irradiation effect on runner plant of strawberry with 60Co-gamma ray. ISHS Acta Hortic 842:597–600

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Research Foundation of Korea (NRF) (NRF-2018M2A2A6A05057264), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Keun Ha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, J., Kim, W.J., Kim, S.H. et al. Characterization of genetic variation and antioxidant properties in strawberry (Fragaria × ananassa Duch.) mutant genotypes. Genet Resour Crop Evol 67, 1457–1471 (2020). https://doi.org/10.1007/s10722-020-00918-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-020-00918-3

Keywords

Navigation