Skip to main content

Advertisement

Log in

Breaking seed coat impermeability to aid conservation and utilization of wild Vigna species

  • Notes on Neglected and Underutilized Crops
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The extent of hardseededness due to seed coat impermeability and pre-treatments to overcome it have been worked out in 34 accessions comprising 14 species of V. luteola (Jacq.) Benth. Mart., V. vexillata (L.) A. Rich., V. wightii (Bedd.) Babu and S.K.Sharma, V. pilosa (Klein ex.Willd.) Baker, V. parkeri Baker, V. reticulata Hook. f., V. dalzelliana (Kuntze) Verdc., V. hainiana Babu, Gopinath and S.K.Sharma, V. trinervia var. bourneae Gamble, V.radiata var. sublobata (Roxburgh) Verdc.(6), V. radiata var. setulosa (Dalzell) Ohwi and Ohashi, V. membranacea A.Rich., V. stipulacea (lam.) Kuntze, V. racemosa (G Don) Hutch. & Dalziel. The percentage of hard seeds ranged from 45 to 95 within accessions and species tested. All the pre-treatments, which are mechanical scarification, hot water soaking at 50 °C for 15, 25 and 30 min and at 80 °C for 15 and 30 min, reduced hard seed percentage and increased final germination significantly (p < 0.01) as compared to the controls. There were significant differences between the species, treatments and species over treatments. In general, mechanical scarification was the best pre-treatment in most of (eleven out of fourteen) species studied with germination ranging from 73 to 100% among the species. This was followed by hot water at 50 °C for 30 min (40–100%) and hot water at 50 °C for 25 min (43–99%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Argel PJ, Paten CJ (1999) Overcoming legume hardseededness. In: Loch DS, Fergusen JE (eds) Forage seed production, vol 2: Tropical and subtropical spp. CABI Publishing, New York, pp 247–266

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSW (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24(3):127–135

    Article  Google Scholar 

  • Chung Y, RabeHesketh S, Dorie V, Gelman A, Liu J (2013) A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika 78(4):685–709

    Article  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1985) Handbook of seed technology for genebanks, vol I, Principles and methodology, International Board of Plant Genetic Resources, Rome, Italy

  • Geneve RL, Baskin CC, Baskin JM, Jayasuriya KM, GamaArachchige NS (2018) Functional morpho-anatomy of water-gap complexes in physically dormant seed. Seed Sci Res 28(3):186–191

    Article  Google Scholar 

  • Hay FR, Mead A, Bloomberg M (2014) Modelling seed germination in response to continuous variables: use and limitations of probit analysis and alternative approaches. Seed Sci Res 24(3):165–186

    Article  Google Scholar 

  • Heinze G, Schemper M (2002) A solution to the problem of separation in logistic regression. Stat Med 21(16):2409–2419

    Article  Google Scholar 

  • International Seed Testing Association (2012) International rules for seed testing. Basserdorf, Switzerland

    Google Scholar 

  • Lenth R (2018) Emmeans: estimated marginal means, aka Least-Squares Means. R package version 1.1.3. https://CRAN.R-project.org/package=emmeans

  • Li B, Foley ME (1997) Genetic and molecular control of seed dormancy. Trends Plant Sci 2:384–389

    Article  Google Scholar 

  • Liu K, Eastwood RJ, Flynn S, Turner RM, Stuppy WH (2008) Seed information database (http://www.kew.org/data/sid)

  • Marechal R, Mascherpa JM, Stainer F (1978) Etude taxonomique d` un groupe complexe d` especes des genres Phaseolus et Vigna (Papilionaceae) sur la base de donne` es morphologiques et polliniques, traitees par l` analyse informatique. Boissiera Geneve 28:1–273

    Google Scholar 

  • Martin I, Guerrero M (2014) Effect of sulphuric acid scarification on seed accessions of cluster clover (Trifolium glomeratum) stored in a genebank. Seed Sci Technol 42:293–299

    Article  Google Scholar 

  • Mira S, Schnadelbach A, Correa EC, Perez-Garcia F, Gonzalez-Benito ME (2017) Variability of physical dormancy in relation to seed mechanical properties of three legume species. Seed Sci Technol 45:540–556

    Google Scholar 

  • Perez-Garcia F, Gonzalez Benito ME, Gomez-Campo C (2007) High viability recorded in ultra-dry seeds of 37 species of Brassicaceae after almost 40 years of storage. Seed Sci Technol 35:143–153

    Article  Google Scholar 

  • Santos PP, Mamani EM, Oliviera GCX, Veasey EA (2001) Variabilidade inter e intra populacional para germinacao de sementes de arroz selvagem. In: Proceeding of the symposio Internacional de iniciacao cientifica da universidade de sao Paulo, Piracicaba, Brazil

  • Stroup WW (2015) Rethinking the analysis of non-normal data in plant and soil science. Agron J 107(2):811–827

    Article  Google Scholar 

  • Takahasi N (1984) Seed germination and seedling growth. In: Tsunoda T, Takahashi N (eds) Biology of rice. Elsevier, Amsterda, pp 71–88

    Chapter  Google Scholar 

  • Tateishi Y (1985) A revision of the adzuki bean group, the subgenus Ceratotropis of the genus Vigna (Leguminoseae). Ph.D. Thesis, Tohoku University, Japan, 292p

  • Tomar RPS, Kumari P (1991) Hard seed studies in black gram. Seed Sci Technol 19:51–56

    Google Scholar 

  • Tomar RPS, Singh K (1993) Hard seed studies in rice bean. Seed Sci Technol 21:679–683

    Google Scholar 

  • Wang YR, Hanson J, Mariam YW (2007) Effect of sulphuric acid pretreatment on breaking hard seed dormancy in diverse accessions of five wild Vigna species. Seed Sci Technol 35:550–559

    Article  Google Scholar 

  • Wang YR, He XQ, Hanson J, Mariam YW (2011) Breaking hard seed dormancy in diverse accessions of five wild Vigna species by hot water and mechanical scarification. Seed Sci Technol 39:12–20

    Article  CAS  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York. https://ggplot2.tidyverse.org

  • Zimmermann LR, Gallusi AA, Martinelli AHM, Fernandez AP, Garcia AH, Pitter JR, Zecchin AR, Dechanzi DI (1998) Hard seed viability in Medicago sativa L., Lotus corniculatus L., Trifolium pratense L. and Melilotus alba Med. Seed Sci Technol 26:271–273

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Director, ICAR-NBPGR for providing support and facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmavati G. Gore.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the content of manuscript and study undertaken.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Gore, P.G. & Aravind, J. Breaking seed coat impermeability to aid conservation and utilization of wild Vigna species. Genet Resour Crop Evol 67, 523–529 (2020). https://doi.org/10.1007/s10722-019-00872-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-019-00872-9

Keywords

Navigation