Exploring genetic diversity of tomato (Solanum lycopersicum L.) germplasm of genebank collection employing SSR and SCAR markers

Abstract

Α wide selection of tomato (Solanum lycopersicum L.) genotypes with diverse origin and breeding history (14 modern varieties, 71 landraces and 22 commercial hybrids) has been initially genotyped with a selection of highly informative simple sequence repeat (SSR) markers and two SCAR markers originally developed for resistance against two main fungal tomato diseases. Our data revealed a high level of genetic diversity across the selection, with an average number of alleles per locus (NA) equal to 9.6, and the average polymorphism information content (PIC) equal to 0.74. Further, the selected SSRs have been verified as highly polymorphic and able to discriminate different patterns within our collection, amplifying a total of 56 alleles. Cluster analysis indicated that the collection could be grouped into three clades, with most of landraces and modern varieties being clearly distinguished from hybrids, but also with each other. Breeding involve the selection of specific phenotypes, limiting the genetic variation of the population. Herein, a notable genetic loss due to breeding was detected in the modern tomato gene pool.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alvarez AE, van de Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103(8):1283–1292

    CAS  Article  Google Scholar 

  2. Bai Y, Kissoudis C, Yan Z, Visser RGF, van der Linden G (2018) Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. Plant J 93(4):781–793

    CAS  PubMed  Article  Google Scholar 

  3. Bauchet G, Grenier S, Samson N, Bonnet J, Grivet L, Causse M (2017) Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theor Appl Genet 130(5):875–889

    CAS  PubMed  Article  Google Scholar 

  4. Benor S, Zhang M, Wang Z, Zhang H (2008) Assessment of genetic variation in tomato (Solanum lycopersicum L.) inbred lines using SSR molecular markers. J Genet Genomics 35(6):373–379

    CAS  PubMed  Article  Google Scholar 

  5. Brown AHD (1979) Enzyme polymorphism in plant populations. Theor Popul Biol 15(1):1–42

    Article  Google Scholar 

  6. Casañas F, Simó J, Casals J, Prohens J (2017) Toward an evolved concept of landrace. Front Plant Sci 8:145

    PubMed  PubMed Central  Article  Google Scholar 

  7. Causse M, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53(377):2089–2098

    CAS  PubMed  Article  Google Scholar 

  8. Chen J, Wang H, Shen H, Chai M, Li J, Qi M, Yang W (2009) Genetic variation in tomato populations from four breeding programs revealed by single nucleotide polymorphism and simple sequence repeat markers. Sci Hortic 122(1):6–16

    CAS  Article  Google Scholar 

  9. Corrado G, Caramante M, Piffanelli P, Rao R (2014) Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Sci Hortic 168:138–144

    Article  Google Scholar 

  10. De Bustos A, Casanova C, Jouve N, Soler C (1999) Analysis of the genetic diversity of wild Spanish populations of the genusHordeum through the study of their endosperm proteins. Plant Syst Evol 214(1–4):235–249

    Article  Google Scholar 

  11. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127(7):1309–1321

    CAS  PubMed  Article  Google Scholar 

  12. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    CAS  Article  PubMed  Google Scholar 

  14. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev Plant Sci 31(2):93–123

    Article  Google Scholar 

  16. Frankel OH, Brown AHD, Burdon JJ (1995) The conservation of plant biodiversity. Cambridge University Press, Cambridge

    Google Scholar 

  17. Ganopoulos I, Xanthopoulou A, Molassiotis A, Karagiannis E, Moysiadis T, Katsaris P, Aravanopoulos F, Tsaftaris A, Kalivas A, Madesis P (2015) Mediterranean basin Ficus carica L.: from genetic diversity and structure to authentication of a Protected Designation of Origin cultivar using microsatellite markers. Trees 29(6):1959–1971

    CAS  Article  Google Scholar 

  18. Ganopoulos I, Xanthopoulou A, Konstantinou S, Karaoglanidis GS, Tsaliki E, Kalivas A, Madesis P (2016) Fast and accurate screening of solanum melongena with high-resolution melting analysis for resistance to fusarium wilt. Int J Veg Sci 22(2):183–189

    Article  Google Scholar 

  19. García-Martínez S, Andreani L, Garcia-Gusano M, Geuna F, Ruiz JJ (2006) Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49(6):648–656

    PubMed  Article  Google Scholar 

  20. Gomez OJ, Blair MW, Frankow-Lindberg BE, Gullberg U (2004) Molecular and phenotypic diversity of common bean landraces from Nicaragua. Crop Sci 44(4):1412–1418

    CAS  Article  Google Scholar 

  21. Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2(10):e245

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. He C, Poysa V, Yu K (2003) Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet 106(2):363–373

    CAS  PubMed  Article  Google Scholar 

  23. Imam AG, Allard RW (1965) Population studies in predominantly self-pollinated species. VI. Genetic variability between and within natural populations of wild oats from differing habitats in California. Genetics 51(1):49–62

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin L, Zhao L, Wang Y, Zhou R, Song L, Xu L, Cui X, Li R, Yu W, Zhao T (2019) Genetic diversity of 324 cultivated tomato germplasm resources using agronomic traits and InDel markers. Euphytica 215(4):69

    Article  CAS  Google Scholar 

  25. Kaur S, Singh AK, Bagati S, Sharma M, Sharma S (2019) Morphological markers based assessment of genetic diversity in cultivated tomato (Solanum Lycopersicon L) Genotypes. Int J Environ Agric Biotechnol 3(2)

  26. Kim M-J, Mutschler MA (2005) Transfer to processing tomato and characterization of late blight resistance derived from Solanum pimpinellifolium L. L3708. J Am Soc Horticul Sci 130(6):877–884

    Article  Google Scholar 

  27. Kim B, Hwang IS, Lee H-J, Oh C-S (2017) Combination of newly developed SNP and InDel markers for genotyping the Cf-9 locus conferring disease resistance to leaf mold disease in the tomato. Mol Breeding 37(5):59

    Article  CAS  Google Scholar 

  28. Korir NK, Diao W, Tao R, Li X, Kayesh E, Li A, Zhen W, Wang S (2014) Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers. Genet Mol Res 13(1):43–53

    CAS  PubMed  Article  Google Scholar 

  29. Lande R, Schemske DW (1985) The evolution of self-fertilization and inbreeding depression in plants. I. Genet Models Evol 39(1):24–40

    Google Scholar 

  30. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129

    CAS  PubMed  Article  Google Scholar 

  31. Mariette S, Tavaud M, Arunyawat U, Capdeville G, Millan M, Salin F (2010) Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet 11:77–89

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Mazzucato A, Papa R, Bitocchi E, Mosconi P, Nanni L, Negri V, Picarella ME, Siligato F, Soressi GP, Tiranti B (2008) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116(5):657–669

    PubMed  Article  Google Scholar 

  33. Mellidou I, Keulemans J, Kanellis AK, Davey MW (2012) Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC Plant Biol 12(1):239

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Mutlu N, Demirelli A, Ilbi H, Ikten C (2015) Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici. Theor Appl Genet 128(9):1791–1798

    CAS  PubMed  Article  Google Scholar 

  35. Nei M (1975) Molecular population genetics and evolution. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  36. Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76(10):5269–5273

    CAS  PubMed  Article  Google Scholar 

  37. Oja T (2005) Isozyme evidence on the genetic diversity, mating system and evolution of Bromus intermedius (Poaceae). Plant Syst Evol 254(3–4):199–208

    CAS  Article  Google Scholar 

  38. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4(3):347–354

    CAS  PubMed  Article  Google Scholar 

  39. Panthee DR, Piotrowski A, Ibrahem R (2017) Mapping quantitative trait loci (QTL) for resistance to late blight in tomato. Int J Mol Sci 18(7):1589

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  40. Park YH, West MAL, St. Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L). Genome 47(3):510–518

    CAS  PubMed  Article  Google Scholar 

  41. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and researchβ€”an update. Bioinformatics 28(19):2537–2539

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rivera Y, Stommel J, Dumm J, Ismaiel A, Wyenandt CA, Crouch JA (2016) First report of Colletotrichum nigrum causing anthracnose disease on tomato fruit in New Jersey. Plant Dis 100(10):2162

    Article  Google Scholar 

  44. Sacco A, Ruggieri V, Parisi M, Festa G, Rigano MM, Picarella ME, Mazzucato A, Barone A (2015) Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLoS ONE 10(9):e0137139

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. Sadeghi B, Mirzaei S (2018) First report of Alternaria leaf spot caused by Alternaria chlamydosporigena on tomato in Iran. Plant Disease (ja)

  46. Sardaro MLS, Marmiroli M, Maestri E, Marmiroli N (2013) Genetic characterization of Italian tomato varieties and their traceability in tomato food products. Food Sci Nutr 1(1):54–62

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Sim SC, Robbins MD, Van Deynze A, Michel AP, Francis DM (2011) Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity 106(6):927

    CAS  PubMed  Article  Google Scholar 

  48. Sun YD, Liang Y, Wu JM, Li YZ, Cui X, Qin L (2012) Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum × S. pimpinellifolium cross. Genet Mol Res 11:3696–3710

    CAS  PubMed  Article  Google Scholar 

  49. Terzopoulos PJ, Bebeli PJ (2010) Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Scientia Horticulturae 126(2):138–144

    Article  Google Scholar 

  50. Terzopoulos PJ, Walters SA, Bebeli PJ (2009) Evaluation of Greek tomato landrace populations for heterogeneity of horticultural traits. Eur J Hortic Sci 74:24–29

    Google Scholar 

  51. Timilsina S, Adkison H, Testen AL, Newberry EA, Miller SA, Paret ML, Minsavage GV, Goss EM, Jones JB, Vallad GE (2017) A novel phylogroup of Pseudomonas cichorii identified following an unusual disease outbreak on tomato. Phytopathology 107(11):1298–1304

    CAS  PubMed  Article  Google Scholar 

  52. Tomato Genome C (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635

    Article  CAS  Google Scholar 

  53. Toonen RJ, Hughes S (2001) Increased throughput for fragment analysis on an ABI Prism® 377 automated sequencer using a membrane comb and STRand software. Biotechniques 31(6):1320–1325

    CAS  PubMed  Google Scholar 

  54. Truong HTH, Tran HN, Choi HS, Park PH, Lee HE (2013) Development of a co-dominant SCAR marker linked to the Ph-3 gene for Phytophthora infestans resistance in tomato (Solanum lycopersicum). Eur J Plant Pathol 136(2):237–245

    CAS  Article  Google Scholar 

  55. Tseng Y-C, Tillman BL, Peng Z, Wang J (2016) Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EP TM ‘113’. BMC Genet 17(1):128

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169(3):1617–1630

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Wang T, Zou QD, Qi SY, Wang XF, Wu YY, Liu N, Zhang YM, Zhang ZJ, Li HT (2016) Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers. Genet Mol Res 15(3):1–12

    Google Scholar 

  58. Yeh FC, Yang RC (2000) PopGen computer program (ver. 1.31) microsoft windows based freeware for population genetic analysis

Download references

Acknowledgements

This project was funded in part through AgroETAK to EDG (No. 3497/146) administered by HAO—DEMETER (responsible scientist, AGD) under the “Research, Technological Development & Innovation Projects”—in the framework of the Operational Program “Human Resources Development” MIS 453350. This was in turn co-financed by the European Union Social Fund and by Greece through the National Strategic Reference Framework (ESPA, Research Funding Program 2007–2013). This work was supported by Chiang Mai University.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Panagiotis Madesis or Andreas G. Doulis.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonias, E.D., Ganopoulos, I., Mellidou, I. et al. Exploring genetic diversity of tomato (Solanum lycopersicum L.) germplasm of genebank collection employing SSR and SCAR markers. Genet Resour Crop Evol 66, 1295–1309 (2019). https://doi.org/10.1007/s10722-019-00786-6

Download citation

Keywords

  • Landraces
  • SCAR marker
  • Loss of diversity
  • SSR markers
  • Modern varieties