Genetic Resources and Crop Evolution

, Volume 66, Issue 6, pp 1217–1230 | Cite as

Orange-fleshed cucumber (Cucumis sativus var. sativus L.) germplasm from North-East India: agro-morphological, biochemical and evolutionary studies

  • Pragya RanjanEmail author
  • Anjula Pandey
  • A. D. Munshi
  • Rakesh Bhardwaj
  • K. K. Gangopadhyay
  • Pavan Kumar Malav
  • Chithra Devi Pandey
  • K. Pradheep
  • B. S. Tomar
  • Ashok Kumar
Research Article


The common cucumber is low in carotenoid content with white flesh colour while orange fleshed cucumber germplasm from north-east region of India has high carotenoid content and thus, appears to be promising for utilization in breeding programme. The current study was conducted on morphological, biochemical and organoleptic assessment of five orange fleshed cucumber germplasm and comparison was drawn with the check variety ‘Pusa Uday’. Since this landrace is not common, botanical description was provided based on morphological observations. A distinct seed morphology with pointed tip of about 0.1 mm at distal end of the seed was noticed in all the carotenoid rich accessions. The carotenoid content of immature and mature fruits ranged from 4.08 to 8.21 and 22.99 to 54.84 (µg/g), respectively as compared to 2.54 µg/g in check variety Pusa Uday. The carotenoid rich germplasm has high potential for enriching food and alleviating vitamin A deficiency in the country. Morphological characters, anatomical evidences, trends of distribution and uses suggest the prevalence of diversity of orange fleshed cucumbers in north-east region of India. The germplasm having common character viz., orange flesh colour in adjoining regions of Myanmar and southern China are indicative of close linkages of continuous variation in this region.


Orange fleshed Cucumber Carotenoid Landrace Biochemical Morphology Seed Domestication 



Authors are thankful to the Director, ICAR-NBPGR, and ICAR-IARI, Pusa Campus, New Delhi for providing the facilities for undertaking the evaluation work and facilitating seed increase. Also grateful to the OIC, Germplasm Exchange and Policy Unit and Head, Division of Germplasm Conservation for their help and logistic support for carrying out this work. The authors thank Drs Joseph K John and Dr K V Bhat for sharing knowledge and study.


This study was conducted by using the institutional funding resources from ICAR-NBPGR, New Delhi.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. AOAC (2016) Official methods of analysis of AOAC International, 20th edn. AOAC, RockvilleGoogle Scholar
  2. Aydemir I (2009) Determination of genetic diversity in cucumber (Cucumis sativus L.) germplasms. Graduate School of Engineering and Sciences of Izmir Institute of Technology. Thesis 2009Google Scholar
  3. Bisht IS, Bhat KV, Tanwar SPS, Bhandari DC, Joshi K, Sharma AK (2004) Distribution and genetic diversity of Cucumis sativus var. hardwickii (Royle) Alef. in India. J Hortic Sci Biotechnol 79:783–791CrossRefGoogle Scholar
  4. Brothwell D, Brothwell P (1969) Food in antiquity: A survey of the diet of early peoples. Frederick A. Praeger Publishers, New YorkGoogle Scholar
  5. Cao M, Zou X, Warren M, Zhu H (2006) Tropical forest of Xishuangbanna. China. Biotropica 38:306–309CrossRefGoogle Scholar
  6. Chen JF, Zhang SL, Zhang XG (1994) The Xishuangbanna gourd (Cucumis sativus var. xishuangbannesis Qi et Yuan), a traditionally cultivated plant of the Hanai People, Xishuangbanna, Yunnan, China. Cucurbit Genet Coop Rep 17:18–20Google Scholar
  7. Cuevas HE, Song H, Staub JE, Simon PW (2010) Inheritance of beta-carotene-associated flesh color in cucumber (Cucumis sativus L.) fruit. Euphytica 171:301–311CrossRefGoogle Scholar
  8. De Candolle A (1886) Origin of cultivated plants. Appleton, New York, pp 264–266Google Scholar
  9. FAOSTAT (2017) Food and agriculture data. Cucumber production.
  10. Harlan JR (1975) ASA and CSSA. Madison, WIGoogle Scholar
  11. Hedge JE, Hofreiter BT (1962) In: Whistler RL, Be Miller JN (eds) Carbohydrate chemistry, vol 17. Academic Press, New YorkGoogle Scholar
  12. Henan I, Tlili I, R’him T, Ali AB, Jebari H (2016) Carotenoid content and antioxidant activity of local varieties of muskmelon (Cucumis melo L.) grown in Tunisia. J New Sci 29(4). Published May 01 2016
  13. Horejsi T, Staub JE (1999) Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified poly-morphic DNA. Genet Res Crop Evol 46:337–350CrossRefGoogle Scholar
  14. Jagota SK, Dani HM (1982) A new colorimetric technique for the estimation of vitamin C using Folin reagent. Anal Biochem 127:178–182CrossRefGoogle Scholar
  15. Keng H (1974) Economic plants of ancient north China as mentioned in Shih Ching (Book of Poetry). Econ Bot 28:391–410CrossRefGoogle Scholar
  16. Kooistra E (1971) Inheritance of fruit flesh and skin colours in powdery mildew resistant cucumbers (Cucumis sativus L.). Euphytica 20:521–523Google Scholar
  17. Li S (1518–1593) Compendium of materia medica. Chapter vegetables, part III: cucurbits, vol 28, pp 14–15Google Scholar
  18. Li H-L (1969) The vegetables of ancient China. Econ Bot 23:253–260CrossRefGoogle Scholar
  19. Lu HW, Miao H, Tian GL, Wehner TC, Gu XF, Zhang SP (2015) Molecular mapping and candidate gene analysis for yellow fruit flesh in cucumber. Mol Breed. 35:64. CrossRefGoogle Scholar
  20. Lv J, Qi J, Shi Q, Shen D, Zhang S, Shao G et al (2012) Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS ONE 7(10):e46919. CrossRefGoogle Scholar
  21. Naudin C (1859) Essais d’une monographie des especès et des variétés du genre Cucumis. Annales des sciences naturelles, Botanique, ser. 4, tome 11: 5–87 [p. 30 discusses C. hardwickii]Google Scholar
  22. Navazio JP (1994) Utilization of high carotene cucumber germplasm for genetic improvement of nutritional quality. Ph.D. thesis, University of Wisconsin–MadisonGoogle Scholar
  23. Nutrition WHO. Micronutrient deficiencies. Cited 21 March 2012
  24. Paris HS, Marie-Christine Daunay, Janick Jules (2012) Occidental diffusion of cucumber (Cucumis sativus) 500–1300 CE: two routes to Europe. Ann Bot 109:117–126CrossRefGoogle Scholar
  25. Qi C, Yuan Z, Li Y (1983) A new type of cucumber—Cucumis sativus L. var. xishuangbannanesis [sic]. Acta Hortic Sin 10:259–264Google Scholar
  26. Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Städler T, Renner SS, Kamoun S, Lucas WJ, Zhang Z, Huang S (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515. CrossRefGoogle Scholar
  27. Ranjan P, Gangopadhay KK, Joseph John K, Pandey C, Srivastava R, Meena BL, Dutta M (2013a) Orange fleshed carotenoid rich cucumber. ICAR News: Sci Technol Newslett 19(2):7–8Google Scholar
  28. Ranjan P, Gangopadhay KK, Pandey C, Srivastava R, Meena BL, Dutta M (2013b) Orange fleshed cucumber to enrich nutrition. Indian Hortic 91–92Google Scholar
  29. Ranjan P, Gangopadhay KK, Bag MK, Roy A, Srivastava R, Bhardwaj R, Dutta M (2015) Evaluation of cucumber (Cucumis sativus L.) germplasm for agronomic traits and disease resistance and estimation of genetic variability. Indian J Agric Sci 85(2):234–239Google Scholar
  30. Renner SS (2017) A valid name for the Xishuangbanna gourd, a cucumber with carotene-rich fruits. PhytoKeys 85:87–94CrossRefGoogle Scholar
  31. Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. Melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci USA 107:14269–14273CrossRefGoogle Scholar
  32. Shen D (2009) Analysis of population genetic diversity in Cucumis sativus. L. var xishuangbannanesis and study on the QTL mapping of fruit flash color in cucumber. Chinese Academy of Agriculture Sciences, Beijing (in Chinese) Google Scholar
  33. Simon PW (1990) Carrots and other horticultural crops as a source of provitamin A carotenes. HortScience 25:1495–1499CrossRefGoogle Scholar
  34. Simon PW, Navazio JP (1997) Early orange mass 400, early orange mass 402, and late orange mass 404: high-carotene cucumber germplasm. HortScience 32:144–145CrossRefGoogle Scholar
  35. Solheim WG (1972) An earlier agricultural revolution. Sci Am 226:34–41CrossRefGoogle Scholar
  36. Song H (2009) Anther culture, QTL analysis of orange flesh and mapping of carotenoid biosynthesis genes in cucumber (Cucumis sativus L.). Nanjing Agriculture University, Nanjing (in Chinese) Google Scholar
  37. Staub JE, Serquen FC, McCreight James D (1997) Genetic diversity in cucumber (Cucumis sativus L.): III. An evaluation of Indian germplasm. Gen Res Crop Evol 44:315–326CrossRefGoogle Scholar
  38. Staub JE, Serquen FC, Horejsi T, Chen JF (1999) Genetic diversity in cucumber (Cucumis sativus L.): IV. An evaluation of Chinese germplasm. Gen Res Crop Evol 46:297–310. CrossRefGoogle Scholar
  39. Staub JE, Simon PW, Cuevas HE (2011) USDA, ARS EOM 402-10 high b-carotene cucumber. HortScience 46:1426–1427CrossRefGoogle Scholar
  40. Swiader JM, Ware GW, Mccollum JP (1992) Producing vegetable crops. Interstate, Danville, p 626Google Scholar
  41. Sword For Pen (1937) TIME Magazine, 12 April 1937Google Scholar
  42. Tannahill R (1973) Food in history. Stein and Day Publishers, New YorkGoogle Scholar
  43. United Nations (2010) System Standing Committee on Nutrition–6th report on the world nutrition situation. GenevaGoogle Scholar
  44. van Luijk MN (2004) Cucumis sativus L. In: Grubben GJH, Denton OA (eds). PROTA 2: vegetables/legumes. [CD-Rom]. PROTA, WageningenGoogle Scholar
  45. Wehner TC (2005) Gene list 2005 for cucumber. Cucurbit Genet Coop Rep 28–29:105–141Google Scholar
  46. Whitaker TW, Davis GN (1962) Cucurbits: botany, cultivation, and utilization. lnterscience Publishers, New YorkGoogle Scholar
  47. WHO Nutrition Report (2012) Micronutrient deficiencies. Cited 21 March 2012
  48. Yang SL, Pu H, Liu PY, Walters TW (1991) Preliminary studies on Cucumis sativus var. xishuangbannanesis. Cucurbit Genet Coop Rep 14:29–31Google Scholar
  49. Ye X, Al Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Pragya Ranjan
    • 1
    Email author
  • Anjula Pandey
    • 1
  • A. D. Munshi
    • 2
  • Rakesh Bhardwaj
    • 1
  • K. K. Gangopadhyay
    • 1
  • Pavan Kumar Malav
    • 1
  • Chithra Devi Pandey
    • 1
  • K. Pradheep
    • 1
  • B. S. Tomar
    • 2
  • Ashok Kumar
    • 1
  1. 1.ICAR-National Bureau of Plant Genetic ResourcesNew DelhiIndia
  2. 2.ICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations