Genetic Resources and Crop Evolution

, Volume 65, Issue 5, pp 1503–1516 | Cite as

DNA profiling of figs (Ficus carica L.) from Slovenia and Californian USDA collection revealed the uniqueness of some North Adriatic varieties

  • Tea Knap
  • Mallikarjuna Aradhya
  • Alenka Baruca Arbeiter
  • Matjaž Hladnik
  • Dunja Bandelj
Research Article


A set of 23 local varieties from Slovenia and 218 fig accessions from Californian fig germplasm collection were compared to determine the identity of genotypes and their possible genetic relationships. Figs were genotyped using twelve microsatellite loci. One hundred alleles were identified over all microsatellite loci with an average of 8.33 alleles per locus and a polymorphic information content of 0.557 per locus. DNA genotyping demonstrated a relatively high level of genetic diversity between analysed figs. Comparison of fig genotypes from Slovenia and California demonstrated that only six Slovenian varieties shared identical DNA profiles with figs from the Californian collection, while the other 17 Slovenian varieties were unique and characteristic to the North Adriatic region. The information obtained will contribute to a better management of fig genetic resources.


Ficus carica L. SSR Slovenian varieties Californian germplasm Genetic identity 



This work was supported by the Slovenian Research Agency, as a part of bilateral project Slovenia-United States of America (BI-US/16-17-019) and Young Researcher Programme (37503).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10722_2018_634_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 37 kb)
10722_2018_634_MOESM2_ESM.docx (19 kb)
Supplementary material 2 (DOCX 19 kb)


  1. Achtak H, Oukabli A, Ater M, Santoni S, Kjellberg F, Khadari B (2009) Microsatellite markers as reliable tools for fig cultivar identification. J Am Soc Hortic Sci 134:624–631Google Scholar
  2. Achtak H, Ater M, Oukabli A, Santoni S, Kjellberg F, Khadari B (2010) Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: the case of fig (Ficus carica L.) in Morocco. BMC Plant Biol 10:28. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ali-Shtayeh MS, Jamous RM, Abu Zaitoun SY, Mallah OB, Mubaslat AK (2014) Genetic diversity of the Palestinian fig (Ficus carica L.) collection by pomological traits and RAPD markers. Am J Plant Sci 05:1139–1155. CrossRefGoogle Scholar
  4. Aradhya MK, Stover E, Velasco D, Koehmstedt A (2010) Genetic structure and differentiation in cultivated fig (Ficus carica L.). Genetica 138:681–694. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT (2014) Traditional uses, phytochemistry and pharmacology of Ficus carica: a review. Pharm Biol 52:1487–1503. CrossRefPubMedGoogle Scholar
  6. Balas FC, Osuna MD, Domínguez G, Pérez-Gragera F, López-Corrales M (2014) Ex situ conservation of underutilised fruit tree species: establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs). Tree Genet Genomes 10:703–710. CrossRefGoogle Scholar
  7. Bandelj D (2008) Development of the identification key for reference fig (Ficus carica L.) varieties from Slovene Istria. Ann Ser Hist Nat 18:259–264Google Scholar
  8. Bandelj D, Javornik B, Jakse J (2007) Development of microsatellite markers in the common fig, Ficus carica L. Mol Ecol Notes 7:1311–1314. CrossRefGoogle Scholar
  9. Bandelj D, Bohanec B, Bučar-Miklavčič M, Butinar B, Javornik B, Jakše J et al. (2008) The common fig (Ficus carica L.) in Istria: morphological, molecular and some chemical characteristics. University of Primorska, Science and Reserach Centre, Publishing House Annales, KoperGoogle Scholar
  10. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314PubMedPubMedCentralGoogle Scholar
  11. Caroli S, Santoni S, Ronfort J (2011) AMaCAID: a useful tool for accurate marker choice for accession identification and discrimination. Mol Ecol Resour 11:733–738. CrossRefPubMedGoogle Scholar
  12. Chatti K, Baraket G, Ben Abdelkrim A, Saddoud O, Mars M, Trifi M, Salhi Hannachi A (2010) Development of molecular tools for characterization and genetic diversity analysis in Tunisian fig (Ficus carica) cultivars. Biochem Genet 48:789–806. CrossRefPubMedGoogle Scholar
  13. Chawla A, Kaur R, Sharma AK (2012) Ficus carica Linn.: a review on its pharmacognostic, phytochemical and pharmacological aspects. Int J Pharm Phytopharm Res 1:215–232Google Scholar
  14. Condit IJ (1955) Fig varieties: a monograph. Hilgardia 23:323–538CrossRefGoogle Scholar
  15. Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. CrossRefGoogle Scholar
  16. Essid A, Aljane F, Ferchichi A, Hormaza JI (2015) Analysis of genetic diversity of Tunisian caprifig (Ficus carica L.) accessions using simple sequence repeat (SSR) markers. Hereditas 152:1. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. CrossRefPubMedGoogle Scholar
  18. FAOSTAT (2017) Food and Agriculture Organization of the United Nations Statistics Division.*/E. Accessed 28 Jan 2018
  19. Felsenstein J (2013) PHYLIP Version 3.695. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  20. Ferrara G, Mazzeo A, Pacucci C, Matarrese AMS, Tarantino A, Crisosto C, Incerti O, Marcotuli I, Nigro D, Blanco A, Gadaleta A (2016) Characterization of edible fig germplasm from Puglia, southeastern Italy: is the distinction of three fig types (Smyrna, San Pedro and Common) still valid? Sci Hortic 205:52–58. CrossRefGoogle Scholar
  21. FRUMATIS (2018) EU database of registered plant varieties. Accessed 28 Jan 2018
  22. Gaaliche B, Saddoud O, Mars M (2012) Morphological and pomological diversity of fig (Ficus carica L.) cultivars in northwest of Tunisia. ISRN Agron 2012:1–9. CrossRefGoogle Scholar
  23. Ganopoulos I, Xanthopoulou A, Molassiotis A, Karagiannis E, Moysiadis T, Katsaris P, Aravanopoulos F, Tsaftaris A, Kalivas A, Madesis P (2015) Mediterranean basin Ficus carica L.: from genetic diversity and structure to authentication of a protected designation of origin cultivar using microsatellite markers. Trees 29:1959–1971. Scholar
  24. Giraldo E, Viruel M, López-Corrales M, Hormaza J (2005) Characterisation and cross-species transferability of microsatellites in the common fig (Ficus carica L.). J Hortic Sci Biotechnol 80:217–224. CrossRefGoogle Scholar
  25. Icyer NC, Toker OS, Karasu S, Tornuk F, Kahyaoglu T, Arici M (2017) Microencapsulation of fig seed oil rich in polyunsaturated fatty acids by spray drying. J Food Meas Charact 11:50–57. CrossRefGoogle Scholar
  26. Ikegami H, Nogata H, Hirashima K, Awamura M, Nakahara T (2008) Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers. Genet Resour Crop Evol 56:201–209. CrossRefGoogle Scholar
  27. IPGRI (2003) Descriptors for fig. International Plant Genetic Resources Institute, Rome, Italy, and International Centre for Advanced Mediterranean Agronomic Studies, Paris, France 52Google Scholar
  28. Japelaghi RH, Haddad R, Garoosi GA (2011) Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Mol Biotechnol 49:129–137. CrossRefPubMedGoogle Scholar
  29. Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543. CrossRefGoogle Scholar
  30. Kalinowski ST (2005) Hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. CrossRefGoogle Scholar
  31. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. CrossRefPubMedGoogle Scholar
  32. Khadari B, Hochu I, Santoni S, Kjellberg F (2001) Identification and characterization of microsatellite loci in the common fig (Ficus carica L.) and representative species of the genus Ficus. Mol Ecol Notes 1:191–193. CrossRefGoogle Scholar
  33. Khadari B, Oukabli A, Ater M, Mamouni A, Roger J, Kjellberg F (2005) Molecular characterization of Moroccan fig germplasm using intersimple sequence repeat and simple sequence repeat markers to establish a reference collection. Hortic Sci 40:29–32Google Scholar
  34. Knap T, Jakše J, Cregeen S, Javornik B, Hladnik M, Bandelj D (2016) Characterization and defining of a core set of novel microsatellite markers for use in genotyping and diversity study of Adriatic fig (Ficus carica L.) germplasm. Braz J Bot 39:1095–1102. CrossRefGoogle Scholar
  35. Knap T, Baruca Arbeiter A, Jakše J, Čizmović M, Adakalić M, Popović R, Lazović B, Strikić F, Podgornik M, Bandelj D (2017) Diversity of figs (Ficus carica L.) from the east Adriatic coast. Acta Hortic 1173:11–16. CrossRefGoogle Scholar
  36. Kraljevina Jugoslavija (1932) Statistički godišnjak 1929. Knjiga I, BeogradGoogle Scholar
  37. Langella O (2002) Populations, 1.2.31. Population genetic software. Accessed 16 Jan 2018
  38. Litz RE (2005) Biotechnology of fruit and nut crops. Biotechnology in agriculture series no. 29. CABI Publishing, Tropical Research and Education Center, University of Florida, GainesvilleCrossRefGoogle Scholar
  39. Minch E, Ruiz-Linares A, Goldstein D, Feldman M, Kidd JR, Cavalli-Sforza LL (1997) Microsat 1.5: a computer program for calculating various statistics on microsatellite allele data. Department of Genetics, University of Stanford, StanfordGoogle Scholar
  40. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170. CrossRefPubMedGoogle Scholar
  41. Page R (1996) TREEVIEW, tree drawing software for Apple Macintosh and Microsoft Windows. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  42. Papadopoulou K, Ehaliotis C, Tourna M, Kastanis P, Karydis I, Zervakis G (2002) Genetic relatedness among dioecious Ficus carica L. cultivars by random amplified polymorphic DNA analysis, and evaluation of agronomic and morphological characters. Genetica 114:183–194. CrossRefPubMedGoogle Scholar
  43. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Perez-Jimenez M, Lopez B, Dorado G, Pujadas-Salva A, Guzman G, Hernandez P (2012) Analysis of genetic diversity of southern Spain fig tree (Ficus carica L.) and reference materials as a tool for breeding and conservation. Hereditas 149:108–113. CrossRefPubMedGoogle Scholar
  45. Podgornik M, Vuk I, Vrhovnik I, Mavsar DB (2010) A survey and morphological evaluation of fig (Ficus carica L.) genetic resources from Slovenia. Sci Hortic 125:380–389. CrossRefGoogle Scholar
  46. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  47. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed 16 Jan 2018
  48. Rogers JS (1972) Measures of genetic similarity and genetic distance. Stud Genet VII 7213:145–153Google Scholar
  49. Saddoud O, Chatti K, Salhi-Hannachi A, Mars M, Rhouma A, Marrakchi M, Trifi M (2007) Genetic diversity of Tunisian figs (Ficus carica L.) as revealed by nuclear microsatellites. Hereditas 144:149–157. CrossRefPubMedGoogle Scholar
  50. Saddoud O, Baraket G, Chatti K, Trifi M, Marrakchi M, Mars M, Salhi-Hannachi A (2011) Using morphological characters and simple sequence repeat (SSR) markers to characterize Tunisian fig (Ficus Carica L.) cultivars. Acta Biol Crac Bot 53:7–14. Google Scholar
  51. Salhi-Hannachi A, Chatti K, Saddoud O, Mars M, Rhouma A, Marrakchi M, Trifi M (2006) Genetic diversity of different Tunisian fig (Ficus carica L.) collections revealed by RAPD fingerprints. Hereditas 143:15–22. CrossRefPubMedGoogle Scholar
  52. Singh A, Prakash J, Meghwal PR, Ranpise SA (2015) Fig. In: Ghosh SN (ed) Breeding of underutilized fruit crops. JAYA, DelhiGoogle Scholar
  53. Soltana H, Tekaya M, Amri Z, El-Gharbi S, Nakbi A, Harzallah A, Mechri B, Hammami M (2016) Characterization of fig achenes’ oil of Ficus carica grown in Tunisia. Food Chem 196:1125–1130. CrossRefPubMedGoogle Scholar
  54. Swofford DL (1981) On the utility of the distance Wagner procedure. In: Funk VA, Brooks DR (eds) Advances in cladistics, New York Bot Garden, New YorkGoogle Scholar
  55. Tamaro D (1915) Trattato di frutticoltura. Hoepli, MilanCrossRefGoogle Scholar
  56. van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. CrossRefGoogle Scholar
  57. Watson L, Dallwitz M, Hansen B (1994) The families of flowering plants. Nord J Bot 14:486CrossRefGoogle Scholar
  58. Yahia EM (2011) Postharvest biology and technology of tropical and subtropical fruits: fundamental issues. Woodhead Publishing, CambridgeCrossRefGoogle Scholar
  59. Yeh F, Yang RC, Boyle T (1999) PopGene Version 131: Microsoft Window-based freeware for population genetic analysis. University of Alberta and Centre for International Forestry Research, Edmonton, Alberta. Accessed 16 Jan 2018

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics, Natural Sciences and Information TechnologiesUniversity of PrimorskaKoperSlovenia
  2. 2.National Clonal Germplasm Repository, USDA-ARSUniversity of California, DavisDavisUSA

Personalised recommendations