Habitat fragmentation and population genetics of Stenocereus quevedonis (Cactaceae) in Michoacán, México: bases for in situ conservation of silvicultural managed genetic resources

Abstract

Stenocereus quevedonis (Ortega) Buxb., “pitire”, is an edible-fruit producing cactus endemic to tropical dry forests of central Mexico. It is silviculturally managed in areas disturbed for six decades. Previous studies showed that pollen flow among conserved and disturbed populations is feasible, but flower visitors have differential activity in those areas. That information and the increasing habitat fragmentation suggest possible differences in genetic diversity and gene flow among conserved and disturbed pitire populations; we therefore compared population genetics among conserved and disturbed sites, to identify actions for their in situ conservation. We sampled tissue from 20 adult pitires per site in three conserved and three disturbed sites. Samples were genotyped through six nuclear microsatellites to compare population genetics parameters through standard statistics and Bayesian analysis. Expected hetozygosity He varied (0.437–0.526), but no significant differences among disturbed and undisturbed sites were identified; gene flow Nm was 0.163–2.067, indicating overall genetic flow and drift equilibrium, but some populations show effects of drift. Genetic structure parameter Fst (0.048–0.020), indicate low genetic differentiation among populations. Bayesian analysis identified that one genetic group is absent in disturbed sites. Effects of disturbance on pitire populations are notorious due to loss of adult plants and one genetic group. Our findings suggest that low genetic differentiation might be in progress, only noticeable in genetic groups distribution but not in genetic diversity. It could be clearer in plants recruited after the disturbance events. Such effect could be buffered by actions favouring pollen and seed flow among populations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Arita HT (1993) Conservation biology of the cave bats of Mexico. J Mamm 74:693–702

    Article  Google Scholar 

  2. Arréola-Nava H (2006) Sistemática Filogenética del Género Stenocereus (Cactaceae). Dissertation, Instituto de Enseñanza e Investigación en Ciencias Agrícolas, Mexico

  3. Arreola-Nava H, Terrazas T (2003) Especies de Stenocereus con areolas morenas: clave y descripciones. Act Bot Mex 64:1–18

    Google Scholar 

  4. Bárcenas RT, Yesson C, Hawkins JA (2011) Molecular systematics of the Cactaceae. Clad 27:470–489

    Google Scholar 

  5. Barnosky AD, Hadly EA, Bascompte J et al (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58

    Article  CAS  Google Scholar 

  6. Barthlott W, Hunt DR (1993) Cactaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Springer, New York, pp 161–197

    Google Scholar 

  7. Bawa KS (1990) Plant pollinator interactions in tropical rain forests. Annu Rev Ecol Syst 21:399–422

    Article  Google Scholar 

  8. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci 98:4563–4568

    Article  CAS  PubMed  Google Scholar 

  9. Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, Covelo

    Google Scholar 

  10. Casas A, Barbera G (2002) Mesoamerican domestication and diffusion. In: Nobel P (ed) Cacti: biology and uses. University of California Press, Los Angeles, pp 143–162

    Google Scholar 

  11. Casas A, Caballero J, Valiente-Banuet A (1999) Use, management and domestication of columnar cacti south-central Mexico: a historical perspective. J Ethnob 19:71–95

    Google Scholar 

  12. Casas A, Lira R, Torres I et al (2016) Ethnobotany for sustainable ecosystem management: a regional perspective in the Tehuacán Valley. In: Lira R, Casas A, Blancas JJ (eds) Ethnobotany of Mexico. Interaction of people and plants in Mesoamerica. Springer, New York, pp 179–206

    Google Scholar 

  13. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  Google Scholar 

  14. Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  CAS  Google Scholar 

  15. Cole FR, Wilson E (2006) Leptonycteris yerbabuenae. Mamm Sp 797:1–7

    Article  Google Scholar 

  16. Comisión Nacional de Áreas Naturales Protegidas (2012) Programa de Manejo Formulado de la Reserva de la Biosfera Zicuirán-Infiernillo. CONANP, Mexico

    Google Scholar 

  17. Cruse Sanders J, Parker C, Friar E, Huang D, Mashayekhi S, Prince L, Otero Arnaiz A, Casas A (2013) Managing diversity: domestication and gene flow in Stenocereus stellatus Riccob. (Cactaceae) in Mexico. Ecol Evol 3:1340–1355

    Article  PubMed  PubMed Central  Google Scholar 

  18. Díaz-Cardenas B, Gómez-Flores L. Rosas-Espinoza VC et al. (2009). Obtención de ADN de cactáceas: comparación de dos métodos de extracción en Ferocactus histrix. En: Carvajal S, Pimienta- Barrios E (ed) Avances en la investigación científica en el CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico, pp 123–129

  19. Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull 19:11–15

    Google Scholar 

  20. Earl DA, von Holdt BM (2012) Structure Harvester: a website and program to visualizing structure output and implementing the Evanno method. Conserv Gen Resour 4:359–361

    Article  Google Scholar 

  21. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  22. Felger RS, Moser MB (1985) People of the desert and sea. Ethnobotany of the Seri Indians. The University of Arizona Press, Tucson

    Google Scholar 

  23. Forman RTT (1995) Land mosaics: the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  24. Godínez-Alvarez H, Ríos-Casanova L, Pérez F (2005) Characteristics of seedling establishment of Stenocereus stellatus (Cactaceae) in the Tehuacán Valley. Mex Southwest Nat 50:375–380

    Article  Google Scholar 

  25. Golubov J, Martínez Valenzuela PA, Durán Campos EJ, Martínez-Cervantes Y (2010) Distribición espacial y nodricismo en Mammillaria carnea en el Municipio de Valerio Trujano, Cuicatlán. Oaxaca Cact Suculent Mex 55:56–64

    Google Scholar 

  26. Guillot G, Mortier F, Estoup A (2005) A computer package for landscape genetics. Mol Ecol Not 5:708–711

    Article  CAS  Google Scholar 

  27. Hunt D (1992) CITES Cactaceae checklist. Royal Botanic Gardens, Kew

    Google Scholar 

  28. Jacquemyn H, Brys R, Hermy M (2002) Patch occupancy, population size and reproductive success of a forest herb Primula elatior in a fragmented landscape. Oecologia 130:617–625

    Article  PubMed  Google Scholar 

  29. Jules ES, Rathcke BJ (1999) Mechanisms of reduced Trillium recruitment along edges of old-growth forest fragments. Conserv Biol 13:784–793

    Article  Google Scholar 

  30. Klapwijk MJ, Lewis OT (2008) Effects of climate change and habitat fragmentation on trophic interactions. In: Claro KD, Oliveira PS, Rico-Gray V (eds) Tropical biology and conservation management. Encyclopedia of life support systems. UNESCO, Oxford

    Google Scholar 

  31. Lozano-Garza OA (2013) Análisis de la estructura genética poblacional de la pitaya agria (Stenocereus gummosus) en el desierto sonorense. Dissertation. Centro de Investigaciones Biológicas del Noroeste, Baja California Sur, México

  32. Lozano-Garza OA, León de la Luz JL, Favela Lara S, García de León F (2015) New interpretations about clonal architecture for the sour pitaya (Stenocereus gummosus, Cactaceae), arising from microsatellite markers of de novo isolation and characterization. Open J Gen 5:1–11

    Article  CAS  Google Scholar 

  33. McNeely JA, Miller KR, Reid WV, Mittermeier RA, Werner TB (1990) Conserving the world’s biological diversity. World Conservation Union, World Resources Institute, Conservation International, World Wildlife Fund–US, and the World Bank, Washington

  34. Méndez M, Dorantes A, Dzib G, Argáez J, Durán R (2006) Germination and seedling establishment of Pterocereus gaumeri a columnar, rare and endemic cactus from Yucatan. Mex Bot Sci 79:33–41

    Google Scholar 

  35. Millenium Ecosystem Assessment (2005) Ecosystems an human well-being. biodiversity synthesis. World Resources Institute, Washington

    Google Scholar 

  36. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  CAS  Google Scholar 

  37. Nabuurs GJ, Masera O, Andrasko K et al (2007) Forestry. Climate Change (2007): Mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  38. Otero- Arnaiz A, Cruse-Sanders J, Casas A, Hamrick JL (2004) Isolation and characterization of microsatellites in the columnar cactus: Polaskia chichipe and cross-species amplification within the Tribe Pachycereeae (Cactaceae). Mol Ecol Notes 4:265–267

    Article  CAS  Google Scholar 

  39. Parra F, Casas A, Rocha V, González-Rodríguez A, Arias-Montes S, Rodríguez-Correa H, Tovar J (2014) Spatial distribution of genetic variation of Stenocereus pruinosus (Otto) Buxb. in Mexico: analysing evidence on the origins of its domestication. Genet Resour Crop Evol 62:893–912

    Article  Google Scholar 

  40. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Not 6:288–295

    Article  Google Scholar 

  41. Piñero D, Caballero-Mellado J, Cabrera-Toledo D, Canteros CE, Casas A et al (2008) La diversidad genética como instrumento para la conservación y el aprovechamiento de la biodiversidad: estudios en especies mexicanas. In: Sarukhán J (ed) El Capital natural de México, vol 1. Conocimiento actual de la biodiversidad. CONABIO, México, pp 437–494

    Google Scholar 

  42. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rangel-Landa S, Dávila P, Casas A (2015) Facilitation of Agave potatorum: an ecological approach for assisted population recovery. For Ecol Manag 347:57–74

    Article  Google Scholar 

  44. Rodríguez-Oseguera AG, Casas A, Herrerías-Diego Y, Pérez-Negrón E (2013) Effect of habitat disturbance on pollination biology of the columnar cactus Stenocereus quevedonis at landscape-level in central Mexico. Plant Biol 15:573–582

    Article  PubMed  Google Scholar 

  45. Saunders DA, Richard JH, Chris RM (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32

    Article  Google Scholar 

  46. Suzán H, Nabhan GP, Patten DT (1994) Nurse plant and floral biology of a rare night- blooming cereus, Peniocereus striatus (Brandegee) F. Buxbaum. Conserv Biol 8:461–470

    Article  Google Scholar 

  47. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Not 4:535–538

    Article  CAS  Google Scholar 

  48. Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876

    Article  Google Scholar 

  49. Yetman D (1998) Scattered round stones. University of Arizona Press, Tucson

    Google Scholar 

  50. Yetman D, Van Devender TR (2002) Mayo ethnobotany: land, history and traditional knowledge in northwestern Mexico. University of California Press, Berkeley

    Google Scholar 

Download references

Acknowledgements

The authors thank financial support from the Research Projects CONACYT CB-2013-01-221800 and PAPIIT, DGAPA, UNAM IN206217. We also thank Edgar Pérez-Negrón for fieldwork assistance and Carmen Julia Figueredo for help in laboratory work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alejandro Casas.

Ethics declarations

Conflict of interest

The authors declare that they do not have conflict of interest with any person.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paz-Guerrero, F., Casas, A. & Alvarado-Sizzo, H. Habitat fragmentation and population genetics of Stenocereus quevedonis (Cactaceae) in Michoacán, México: bases for in situ conservation of silvicultural managed genetic resources. Genet Resour Crop Evol 66, 633–643 (2019). https://doi.org/10.1007/s10722-018-00737-7

Download citation

Keywords

  • In situ conservation
  • Pitire
  • Silvicultural management
  • Stenocereus