Skip to main content
Log in

Domestication and saponins contents in a gradient of management intensity of agaves: Agave cupreata, A. inaequidens and A. hookeri in central Mexico

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Saponins occur in numerous plants, including agaves, determining benefic and harmful properties to humans; their presence may favor using plants as soap and other products, but also they may cause caustic effects producing contact dermatitis. In domestication, favorable and unfavorable properties of saponins may cause an increase or decrease of their content, respectively. This study quantified and identified saponins among wild and managed populations of three agave species: A. cupreata Trel. et Berger, A. inaequidens Koch with wild and cultivated populations used for mescal production, and A. hookeri Jacobi, existing exclusively cultivated, used for production of the fermented beverage pulque. We studied 272 plants from 19 populations, quantifying contents of crude saponins through spectrometry. In 12 populations, the saponins types were identified by High Performance Liquid Chromatography–Mass-Spectrography-Time-of-Flight HPLC-MS-TOF. The highest crude saponins content was recorded in A. hookeri (26.09 mg/g), followed by A. cupreata (19.85 and 15.17 mg/g in wild and cultivated populations, respectively). For A. inaequidens, we recorded 14.21, 12.95, and 10.48 mg/g in wild, silvicultural managed and cultivated populations, respectively. We identified 18 saponins types, A. inaequidens showing all of them. A hecogenin glycoside (HG1) is found in high amounts in A. hookeri but in low quantities in A. inaequidens and A. cupreata. A. inaequidens had the greatest diversity of saponins. The contents of crude saponins in A. inaequidens and A. cupreata decrease with management intensity, but contrarily to what we expected, it was the highest in A. hookeri. We hypothesize that such high amount could be due to some saponins, probably HG1, may be precursors of sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Netherlands)

Instant access to the full article PDF.

Fig. 1

(Photos Ignacio Torres-García, CJ Figueredo)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcazar M, Kind T, Gschaedler A, Silveria M, Arrizon J, Fiehn O, Vallejo A, Higuera I, Lugo E (2016) Effect of steroidal saponins from Agave on the polysaccharide cell wall composition of Saccharomyces cerevisiae and Kluyveromyces marxianus. Food Sci Tech 77:430–439

    Google Scholar 

  • Almaraz-Abarca N, Delgado-Alvarado EA, Ávila-Reyes JA et al (2013) The phenols of the genus agave (agavaceae). J Biomater Nanobiotechnol 04:9–16. https://doi.org/10.4236/jbnb.2013.43A002

    Article  Google Scholar 

  • Andrijany VS, Indrayanto G, Soehono LA (1999) Simultaneous effect of calcium, magnesium, copper and cobalt ions on sapogenin steroids content in callus cultures of Agave amaniensis. Plant Cell, Tissue Organ Cult 55:103–108

    Article  Google Scholar 

  • Baumann E, Stoya G, Volkner A, Richter W, Lemke C, Linss W (2000) Hemolysis of human erythrocytes with saponin affects the membrane structure. Acta Histochem 102:21–35

    Article  CAS  PubMed  Google Scholar 

  • Blunden G, Carabot A, Jewers K (1980) Steroidal sapogenins from leaves of some species of Agave and Furcraea. Phytochemistry 19:2489–2490

    Article  CAS  Google Scholar 

  • Brockmann A (2004) La pesca indígena en México. Instituto de Investigaciones Antropológicas, UNAM

    Google Scholar 

  • Delmas F, Di Giorgio C, Elias R, Gasquet M, Azas N, Mshvildadze V, Dekanosidze G, Kemertelidze E, Timon-David P (2000) Antileishmanial activity of three saponins isolated from ivy, α-hederin, β-hederin and hederacolchiside A1, as compared to their action on mammalian cells cultured in vitro. Planta Med 66:343–347

    Article  CAS  PubMed  Google Scholar 

  • Figueredo CJ, Casas A, Colunga-GarcíaMarín P, Nassar JM, González A (2014) Morphological variation, management and domestication of ‘maguey alto’ (Agave inaequidens) and ‘maguey manso’ (A. hookeri) in Michoacán, México. J Ethnobiol Ethnomed 2014(10):66

    Article  Google Scholar 

  • Figueredo CJ, Casas A, Torres-García I (2017) Morphological and genetic divergences between the wild Agave inaequidens and A. cupreata, with the domesticated species A. hookeri. An analysis of their evolutionary relationships. PLoS ONE 12(11):e0187260

    Article  Google Scholar 

  • Francis G, Kerem Z, Makkar HPS, Becker K (2002) The biological action of saponins in animal systems: a review. Br J Nutr 88:587–605

    Article  CAS  PubMed  Google Scholar 

  • Gentry S (1982) Agaves of continental North America. The University of Arizona Press, Tucson

    Google Scholar 

  • González-Valdez LS, Almaraz-Abarca N, Proal-Najera JB, Robles-Martínez F, Valencia-Del-Toro G, Quinto-Escalante M (2013) Surfactant properties of the saponins of Agave durangensis, application on arsenic removal. Int J Eng App Sci 4(2):87–94

    Google Scholar 

  • Hernández R, Lugo EC, Díaz L, Villanueva S (2005) extracción y cuantificación indirecta de las saponinas de Agave lechuguilla Torrey. E-Gnosis 3:1–9

    Google Scholar 

  • Hiai S, Oura H, Nakajima T (1976) Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Med 29:116–122. https://doi.org/10.1055/s-0028-1097639

    Article  CAS  PubMed  Google Scholar 

  • Hong KJ, Tokunaga S, Ishigami Y, Kajiuchi T (2000) Extraction of heavy metals from MSW incinerator fly ash using saponins. Chemosphere 41(3):345–352

    Article  CAS  PubMed  Google Scholar 

  • Johns C, Chernoff LH, Viehoever A (1922) A saponin from Agave lechuguilla Torrey. J Biol Chem 52:335–347

    CAS  Google Scholar 

  • Kilic E, Font J, Puig R, Olak SC, Elik DC (2010) Chromium recovery from tannery sludge with saponin and oxidative remediation. J Hazard Mater 185:456–462

    Article  PubMed  Google Scholar 

  • Leal-Díaz AM, Santos-Zea L, Martínez-Escobedo HC, Guajardo-Flores D, Gutiérrez Uribe JA, Serna-Saldivar SO (2015) Effect of Agave americana and Agave salmiana ripeness on saponin content from aguamiel (Agave sap). J Agric Food Chem 63:3924–3930

    Article  PubMed  Google Scholar 

  • Leal-Díaz A, Noriega LG, Torre-Villalvazo I, Torres N, Alemán-Escondrillas GA, López-Romero P et al (2016) Aguamiel concentrate from Agave salmiana and its extracted saponins attenuated obesity and hepatic steatosis and increased Akkermansia muciniphila in C57BL6 mice. Sci Rep 6:34242

    Article  PubMed  PubMed Central  Google Scholar 

  • Li DW, Lee EB, Kang SS, Hyun JE, Whang WK (2002) Activity-guided isolation of saponins from Kalopanax pictus with anti-inflammatory activity. Chem Pharm Bull 50:900–903

    Article  CAS  PubMed  Google Scholar 

  • Makkar HPS, Siddhuraju O, Becker K (2007) Methods in molecular biology. Plant secundary metabolites. Humana Press, Totowa

    Book  Google Scholar 

  • Marchese JA, Ferreira JFS, Rehder VLG, Rodrigues O (2010) Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). Braz J Plant Physiol 22:1e9

    Article  Google Scholar 

  • Oda K, Matsuda H, Murakami T, Katayama S, Ohgitani T, Yoshikawa M (2000) Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants. Biol Chem 381:67–74

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki T, Koyano T, Kowithayakorn T, Sakai S, Kawahara N, Goda Y, Yamaguchi N, Ishibashi M (2004) New chlorogenin hexasaccharide isolated from Agave fourcroydes with cytotoxic and cell cycle inhibitory activities. Bioorg Med Chem 12:3841–3845

    Article  CAS  PubMed  Google Scholar 

  • Puente-Garza CA, García-Lara S, Gutiérrez-Uribe JA (2017a) Enhancement of saponins and flavonols by micropropagation of Agave salmiana. Ind Crops Prod 105:225–230

    Article  CAS  Google Scholar 

  • Puente-Garza CA, Meza-Miranda C, Ochoa-Martínez D, García-Lara S (2017b) Effect of in vitro drought stress on phenolic acids, flavonols, saponins, and antioxidant activity in Agave salmiana. Plant Physiol Biochem 115:400–407

    Article  CAS  PubMed  Google Scholar 

  • IBM Corp. Released (2013) IBM SPSS Statistics for Windows, Version 22.0. IBM Corp, Armonk, NY

  • Romero-Gonzalez J, Peralta-Videa JR, Rodriguez E, Delgado M, Gardea-Torresdey JL (2006) Potential of Agave lechuguilla biomass for Cr(III) removal from aqueous solutions: thermodynamic studies. Bioresour Technol 97:178–182

    Article  CAS  PubMed  Google Scholar 

  • Salinas ML, Ogura T, Soffchi L (2001) Irritant contact dermatitis caused by needle-like calcium oxalate crystals, raphides, in Agave tequilana among workers in tequila distilleries and agave plantations. Contact Dermat 44:94–96

    Article  CAS  Google Scholar 

  • Santos-Zea L, Leal-Díaz AM, Cortés-Ceballos E, Gutiérrez-Uribe JA (2012) Agave (Agave spp.) and its traditional products as a source of bioactive compounds. Curr Bioact Compd 8:218–231

    Article  CAS  Google Scholar 

  • Santos-Zea L, Fajardo-Ramírez OR, Romo-López I, Gutiérrez-Uribe JA (2016a) Fast centrifugal partition chromatography fractionation of concentrated agave (Agave salmiana) sap to obtain saponins with apoptotic effect on colon cancer cells. Plant Food Hum Nutr 71:57–63

    Article  CAS  Google Scholar 

  • Santos-Zea L, Rosas-Pérez AM, Leal-Díaz AM, Gutiérrez-Uribe JA (2016b) Variability in saponin content, cancer antiproliferative activity and physicochemical properties of concentrated agave sap. J Food Sci 81:H2069–H2075

    Article  CAS  PubMed  Google Scholar 

  • Sidana J, Singh B, Sharma OP (2016) Saponins of Agave: chemistry and bioactivity. Phytochemistry 130:22–46

    Article  CAS  PubMed  Google Scholar 

  • Sparg SG, Light ME, Van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    Article  CAS  PubMed  Google Scholar 

  • Torres I, Blancas J, León A, Casas A (2015) Traditional ecological knowledge and management diversity of Agave inaequidens: local perception of risk and actions for sustainability in Michoacán, Mexico. J Ethnobiol Ethnomed 11:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokosuka A, Mimaki Y (2007) Steroidal glycosides from Agave utahensis. Chem Pharm Bull 55:145–149. https://doi.org/10.1021/np900168d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank people of the communities where the collections were conducted, for their kindness and disposition to collaborate in the research. We also thank the Laboratorio Nacional de Innovación Ecotecnológica para la Sustentabilidad (LANIES, IIES, UNAM), particularly Dr. Mayra Gavito, M Sc. Ana Lidia Sandoval and Dr. Francisco Espinosa for facilities in using the specialized equipment required for this study, and José Francisco Paz Guerrero for his support and assistance in the laboratory. The authors thank financial support by the National Council of Science and Technology (CONACYT, Research Project CB-2013-01-221800) and the Program of Support to Research and Technological Innovation Program (PAPIIT, UNAM, IN209214, and IN206217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Casas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1

Mass spectra of the chlorogenic derivatives identified as: (A) compound 1: chlorogenin + 5Hx + Mp (m/z 1389.61); (B) compound 2: chlorogenin + 4Hx + Pn + Mp (m/z 1359.59); (C) compound 3: chlorogenin + 5H x + Mp (m/z 1389.61); (D) compound 4: chlorogenin + 4Hx + Pn + Mp (m/z 1359.59); (E) compound 5: chlorogenin + 3Hx + H + (m/z 919.46); (F) compound 12: chlorogenin + 4H x + Mp (m/z 1249.54); (G) compound 13: chlorogenin + 3Hx + Pn + Mp (m/z 1219.54); (H) compound 14: chlorogenin + 2Hx (m/z 757.42); (I) compound 15: chlorogenin + 4H x + Mp (m/z 1249.56); (J) compound 16: chlorogenin + 3Hx + Pn + Mp (m/z 1219.54). (TIFF 19454 kb)

Supplement 2

Mass spectra of the saponins other than chlorogenins identified as: (K) compound 6: tigogenin + 5Hx + Mp (m/z 1373.63); Compound (L) tigogenin + 4Hx + Pn + Mp (m/z 1343.63); (M) compound 8: hecogenin + 3Hx + 2Pn (m/z 1181.1); (N) compound 9: manganin + 4H x + Mp (m/z 1263.54); (O) compound 10: manganin + 3Hx + Pn + Mp (m/z 1233.52); (P) compound 11: hecogenin + 3Hx + Pn + Mp (m/z 1217.55); (Q) compound 17: tigogenin + 4Hx + Mp (m/z 1233.56), (R) compound 18: tigogenin + 3Hx + Mp + Pn (m/z 1203.55). (TIFF 15381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbina, C.J.F., Casas, A., Martínez-Díaz, Y. et al. Domestication and saponins contents in a gradient of management intensity of agaves: Agave cupreata, A. inaequidens and A. hookeri in central Mexico. Genet Resour Crop Evol 65, 1133–1146 (2018). https://doi.org/10.1007/s10722-017-0601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-017-0601-6

Keywords