Skip to main content
Log in

Morphological and genetic analysis of a cleistogamous mutant in rapeseed (Brassica napus L.)

  • Short Communication
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Cleistogamy, the trait of non-opening flowers, is considered to be beneficial as it reduces the threat of genetic contamination and gene flow from genetically modified varieties into other crops or native species. A cleistogamous mutant Zhong9-Clg obtained in the rapeseed cultivar Zhongshuang 9 population (Brassica napus L.) treated by ethylmethanesulfonate were investigated. Mutation had pronounced effect on petal and sepal epidermal cells resulting in the inhibition or delay of petal development, forming folded petals which ultimately resulted in cleistogamous flowers. Genetic investigation revealed that this trait was monogenic and the allele for cleistogamy was dominant. Most of the eight agronomic traits tested, including seed yield per plant, were not significantly different between the mutant and wild type plants. Fertility of the cleistogamous mutant Zhong9-Clg was not significantly affected by mutation. Our research findings will lay the foundation for the development of the cleistogamous varieties that could be used in controlling the gene flow in rapeseed in combination with other means of containment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Becker HC, Damgaard C, Karlsson B (1992) Environmental variation for outcrossing rate in rapeseed (Brassica napus). Theor Appl Genet 84:303–306

    CAS  PubMed  Google Scholar 

  • Beckie HJ, Warwick SI, Nair H, Séguin-Swartz G (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecol Appl 13:1276–1294

    Article  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chhabra AK, Sethi SK (1991) Inheritance of cleistogamic flowering in durum wheat (Triticum durum). Euphytica 55:147–150

    Article  Google Scholar 

  • Culley TM, Klooster MR (2007) The cleistogamous breeding system: a review of its frequency, evolution, and ecology in angiosperms. Bot Rev 73:1–30

    Article  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20(6):581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fargue A, Colbach N, Pierre J, Picault H, Renard M, Meynard JM (2006) Predictive study of the advantages of cleistogamy in oilseed rape in limiting unwanted gene flow. Euphytica 151:1–13

    Article  Google Scholar 

  • Kay QON, Daoud HS, Stirton CH (1981) Pigment distribution, light reflection and cell structure in petals. Bot J Linn Soc 83:57–84

    Article  CAS  Google Scholar 

  • Kumar N, Srivastava GC, Dixit K (2008) Flower bud opening and senescence in roses (Rosa hybrida L.). Plant Growth Regul 55:81–99

    Article  CAS  Google Scholar 

  • Leflon M, Hüsken A, Njontie C, Kightley S, Pendergrast D, Pierre J et al (2010) Stability of the cleistogamous trait during the flowering period of oilseed rape (Brassica napus L.). Plant Breed 129:13–18

    Article  Google Scholar 

  • Leflon M, Hüsken A, Kightley S, Pinochet X (2011) Cleistogamy of oilseed rape, a way to prevent cross-fertilization between adjacent fields. Plant Breed 130:338–344

    Article  Google Scholar 

  • Li-Beisson Y, Pollard M, Sauveplane V, Pinot F, Ohlrogge J, Beisson F (2009) Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester. Proc Natl Acad Sci USA 106:22008–22013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YH, Belcram H, Rouault P, Piel N, Lucas MO, Falentin C et al (2008) Cloning of a cleistogamy gene Clg1 in oilseed rape (B. napus L.). 5th ISHS international symposium on Brassicas and the 16th Crucifer Genetics Workshop, 8–12 September 2008, Lillehammer, Norway

  • Lu YH, Arnaud D, Belcram H, Falentin C, Rouault P, Piel N et al (2012) A dominant point mutation in a RINGv E3 ubiquitin ligase homoeologous gene leads to cleistogamy in Brassica napus. Plant Cell 24:4875–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeng JY, Won YJ, Piao R, Cho YI, Jiang W, Chin JH et al (2006) Molecular mapping of a gene ‘ld(t)’ controlling cleistogamy in rice. Theor Appl Genet 112:1429–1433

    Article  CAS  PubMed  Google Scholar 

  • Merwin NC, Glurey LM, Blackwell KH (1981) Inheritance of papery glume and cleistogamy in sorghum. Crop Sci 21:953–956

    Article  Google Scholar 

  • Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G et al (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107:490–495

    Article  CAS  PubMed  Google Scholar 

  • Ni DH, Li J, Duan YB, Yang YC, Wei PC, Xu RF et al (2014) Identification and utilization of cleistogamy gene cl7(t) in rice (Oryza sativa L.). J Exp Bot 65:2107–2117

    Article  CAS  PubMed  Google Scholar 

  • Panikashvili D, Shi JX, Schreiber L, Aharoni A (2011) The Arabidopsis ABCG13 transporter is required for flower cuticle secretion and patterning of the petal epidermis. New Phytol 190:113–124

    Article  CAS  PubMed  Google Scholar 

  • Pfündel EE, Agati G, Cerovic ZG (2006) Optical properties of plant surfaces. In: Riederer M, Muller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 216–249

    Chapter  Google Scholar 

  • Pyke KA, Page AM (1998) Plastid ontogeny during petal development in Arabidopsis. Plant Physiol 116:797–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu GP, Sun YY, Pang HX, Wu Q, Wang FL, Hu SW (2014) EMS mutagenesis and ALS-inhibitor herbicide-resistant mutants of Brassica napus L. Chin J Oil Crop Sci 36(1):025–031

    Google Scholar 

  • Renard M, Tanguy X (1997) Obtention de mutants cléistogames de crucifères. Brevet FR 9715768

  • Saxena KB, Singh L, Ariyanayagam RP (1993) Role of partial cleistogamy in maintaining genetic purity of pigeonpea. Euphytica 66:225–229

    Article  Google Scholar 

  • Shi JX, Malitsky S, De OS, Branigan C, Franke RB, Schreiber L et al (2011) SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs. PLoS Genet 7(5):e1001388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Wang Z, Zuo J, Huangfu C, Qiang S (2010) Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B. juncea var. gracilis. Theor Appl Genet 120:1501–1510

    Article  CAS  PubMed  Google Scholar 

  • Tahir SS, Rajput MTM (2010) SEM studies of petal structure of corolla of the species Sibbaldia L. (Rosaceae). Pak J Bot 42:1443–1449

    Google Scholar 

  • Takahashi R, Kurosaki H, Yumoto S, Han OK, Abe J (2001) Genetic and linkage analysis of ceistogamy in soybean. J Hered 92:89–92

    Article  CAS  PubMed  Google Scholar 

  • Turuspekov Y, Mano Y, Honda I, Kawada N, Watanabe Y, Komatsuda T (2004) Identification and mapping of cleistogamy genes in barley. Theor Appl Genet 109:480–487

    Article  CAS  PubMed  Google Scholar 

  • Wan R, Hou X, Wang X, Qu J, Singer SD, Wang Y (2015) Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Front Plant Sci 6:1–17

    Google Scholar 

  • Yoshida H, Itoh JI, Ohmori S, Miyoshi K, Horigome A, Uchida E et al (2007) Superwoman1-cleistogamy, a hopeful allele for gene containment in GM rice. Plant Biotechnol J 5:835–846

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the earmarked fund for Doctoral Research Foundation of Northwest A&F University (Grant Number: Z109021614) and the Fundamental Research Funds of Northwest A&F University (Grant Number: Z109021703). The authors are grateful to anonymous reviewers for critical reading of the manuscript and their constructive comments for revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwu Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faisal, S., Guo, Y., Zang, S. et al. Morphological and genetic analysis of a cleistogamous mutant in rapeseed (Brassica napus L.). Genet Resour Crop Evol 65, 397–403 (2018). https://doi.org/10.1007/s10722-017-0598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-017-0598-x

Keywords

Navigation