Skip to main content
Log in

Diversity of Sicilian broccoli (Brassica oleracea var. italica) and cauliflower (Brassica oleracea var. botrytis) landraces and their distinctive bio-morphological, antioxidant, and genetic traits

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

During the domestication process of broccoli and cauliflower, a number of evolutionary pathways have been traced that established the modern cultivars of both crops. Over the time, the high level of similarity between the two crops generated confusion about the classification of the landraces and of the related types and forms. With the aim to offer new parameters to delineate discriminant traits between the two crops, we characterized a set of broccoli and cauliflower landraces and F1 hybrids, traditionally grown in Sicily, an important evolution center for both crops, on the basis of biochemical and biomorphological parameters. In addition, to confirm the genetic diversity, microsatellite analysis was performed using 5 SSR primers. A large diversity was detected on glucosinolate, anthocyanin, carotenoids, total polyphenols, and ascorbic acid content, which could be used as phytochemical descriptors for their traceability. Moreover results highlighted a wide variability expressed by the landraces in terms of biomorphological and genetic traits. Microsatellite analysis allowed to classify the genotypes of the experiment into five groups. All Sicilian landraces resulted clustered into distinct groups, while a relatively high confusion was detected for what regards commercial F1 hybrids of both crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abercrombie JM, Farnham MW, Rushing JW (2005) Genetic combining ability of glucoraphanin level and other horticultural traits of broccoli. Euphytica 143:145–151

    Article  CAS  Google Scholar 

  • Adarsh PV, Geetanjali R, Tarunpreet ST, Saroj A (2009) Bio-protective effects of glucosinolates—a review. LWT Food Sci Technol 42:1561–1572

    Article  Google Scholar 

  • Akhlaghi M, Bandy B (2010) Dietary broccoli sprouts protect against myocardial oxidative damage and cell death during ischemia-reperfusion. Plant Foods Hum Nutr 65:193–199

    Article  CAS  PubMed  Google Scholar 

  • Angelino D, Jeffrey E (2014) Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: focus on glucoraphanin. J Funct Foods 7:67–76

    Article  CAS  Google Scholar 

  • Barillari J, Habyarimana E, Cervellati R, Greco E, Iori R (2007) Brassica sprouts as source of health benefiting compounds. Agroindustria 6:98

    Google Scholar 

  • Bellostas N, Kachlicki P, Sorensen JC, Sorensen H (2007) Glucosinolate profiling of seeds and sprouts of B. oleracea varieties used for food. Sci Hortic 114:234–242

    Article  CAS  Google Scholar 

  • Branca F, Iapichino G (1997) Some wild and cultivated Brassicaceae exploited in Sicily as vegetables. FAO/IPGRI Plant Genet Resour Newsl 110:22–28

    Google Scholar 

  • Branca F, Li G, Goyal S, Quiros C (2002) Survey of aliphatic glucosinolates in Sicilian wild and cultivated Brassicaceae. Phytochemistry 59:717–724

    Article  CAS  PubMed  Google Scholar 

  • Branca F, Ragusa L, Tribulato A, Poulsen G, Maggioni L, von Bothmer R (2013a) Diversity of kale growing in Europe as a basis for crop improvement. Acta Hortic 1005:141–148

    Article  Google Scholar 

  • Branca F, Ragusa L, Tribulato A, Di Gaetano C, Cali F (2013b) Genetic relationships of Brassica vegetables and wild relatives in Southern Italy determined by five SSR. Acta Hortic 1005:189–196

    Article  Google Scholar 

  • Buck PA (1956) Origin and taxonomy of broccoli. Econ Bot 10:250–253

    Article  Google Scholar 

  • Burgess B, Mountford H, Hopkins CJ, Love C, Ling AE, Spangenberg GC, Edwards D, Batley J (2006) Identification and characterization of simple sequence repeat (SSR) markers derived in silico from Brassica oleracea genome shotgun sequences. Mol Ecol Notes 6:1191–1194

    Article  CAS  Google Scholar 

  • Cabello-Hurtado F, Gicquel M, Esnault MA (2012) Evaluation of the antioxidant potential of cauliflower (Brassica oleracea) from a glucosinolate content perspective. Food Chem 132:1003–1009

    Article  CAS  Google Scholar 

  • Castaneda-Ovaldo A, Pacheco-Hernandez ML, Paez-Hernandez ME, Rodriguez JA, Galan-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  Google Scholar 

  • Ciancaleoni S, Chiarenza GL, Raggi L, Branca F, Negri V (2013) Diversity characterisation of broccoli (Brassica oleracea L.) landraces for their on-farm (in situ) safeguard and use 4 in breeding programs. Genet Resour Crop Evol 61:451–464

    Article  Google Scholar 

  • Crisp P (1982) The use of an evolutionary scheme for cauliflowers in the screening of genetic resources. Euphytica 31:725–734

    Article  Google Scholar 

  • De Nicola GR, Bagatta M, Pagnotta E, Angelino D, Gennari L, Ninfali P, Rollin P, Iori R (2013) Comparison of bioactive phytochemical content and release of isothiocyanates in selected Brassica sprouts. Food Chem 141:297–303

    Article  PubMed  Google Scholar 

  • Force LE, O’Hare TJ, Wong LS, Irving DE (2007) Impact of cold storage on glucosinolate levels in seed-sprouts of broccoli, rocket, white radish and kohl-rabi. Postharvest Biol Technol 44:175–178

    Article  CAS  Google Scholar 

  • Fuentes F, Paredes-Gonzalez X, Kong AT (2015) Dietary Glucosinolates sulforaphane, phenethyl isothiocyanate, indole-3-carbinol/3,3′-diindolylmethane: antioxidative stress/inflammation, Nrf2, epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Rep 1:179–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorissen A, Kraut NU, de Visser R, de Vries M, Roelofsen H, Vonk RJ (2011) No de novo sulforaphane biosynthesis in broccoli seedlings. Food Chem 127:192–196

    Article  CAS  Google Scholar 

  • Gratacos-Cubarsi M, Ribas-Agustí A, Garcia-Regueiro JA, Castellari M (2010) Simultaneous evaluation of intact glucosinolates and phenolic compounds by UPLC-DAD-MS/MS in Brassica oleracea L. var. botrytis. Food Chem 121:257–263

    Article  CAS  Google Scholar 

  • Gray AR (1982) Taxonomy and evolution of broccoli (Brassica oleracea var. italica). Econ Bot 36:397–410

    Article  Google Scholar 

  • Gustafson-Brown C, Savidge B, Yanofsky MF (1994) Regulation of the Arabidopsis floral homeotic gene APETALA 1. Cell 76:131–143

    Article  CAS  PubMed  Google Scholar 

  • Hammer K, Gladis T, Laghetti G, Pignone D (2013) The wild and the grown—remarks on Brassica. Acta Hortic 1005:49–60

    Article  Google Scholar 

  • IBPGR (1990) Descriptors for Brassica and Raphanus. International Board for Plant Genetic Resources, Rome

    Google Scholar 

  • Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525

    Article  CAS  PubMed  Google Scholar 

  • Lei-Ming S, Jin-Zhi Z, Li M, Chun-Gen H (2014) Molecular cloning, promoter analysis and functional characterization of APETALA 1-like gene from precocious trifoliate orange (Poncirus trifoliata L. Raf.). Sci Hortic 178:95–105

    Article  Google Scholar 

  • Lo Scalzo R, Genna A, Branca F, Chedin M, Chassaigne H (2008) Anthocanin composition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var. capitata) and its stability in relation to thermal treatments. Food Chem 107:136–144

    Article  CAS  Google Scholar 

  • Maggioni L, von Bothmer R, Poulsen G, Branca F (2010) Origin and domestication of cole crops (Brassica oleracea L.): linguistic and literary considerations. Econ Bot 64:109–123

    Article  Google Scholar 

  • Maggioni L, Von Bothmer R, Poulsen G, Branca F, Jørgensen RB (2014) Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy. Hereditas 151:145–158

    Article  PubMed  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    Article  CAS  PubMed  Google Scholar 

  • Mayfield SP, Nelson T, Taylor WC, Malkin R (1986) Carotenoids synthesis and pleiotropic effects in carotenoid-deficient seedling of maizeanta. Planta 169:23–32

    Article  CAS  PubMed  Google Scholar 

  • Perez-Balibrea S, Moreno DA, Garcìa-Viguera C (2011) Genotypic effects on the phytochemical quality of seed and sprouts from commercial broccoli cultivars. Food Chem 125:348–354

    Article  CAS  Google Scholar 

  • Podsedek A, Sosnowska D, Redzynia M, Anders B (2006) Antioxidant capacity and content of Brassica oleracea dietary antioxidants. Int J Food Sci Technol 41:49–58

    Article  CAS  Google Scholar 

  • Prior RL, Wu X, Schaic K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  PubMed  Google Scholar 

  • Purugganan MD, Boyles AL, Suddith J (2000) Variation and selection at the cauliflower floral homeotic gene accompanying the evolution of domesticated Brassica oleracea. Genetics 155:855–862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ragusa L, Picchi V, Tribulato A, Cavallaro C, Lo Scalzo R, Branca F (2016) The effect of the germination temperature on the phytochemical content of broccoli and rocket sprouts. Int J Food Sci Nutr 68(4):411–420

    Article  PubMed  Google Scholar 

  • Rapisarda P, Fanella F, Maccarone E (2000) Reliability of analytical methods for determining anthocyanins in blood orange juices. J Agric Food Chem 48:2249–2252

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Smith LB, King GJ (2000) The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Mol Breed 6:603–613

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tillmans J, Hirsch P, Hirsch W (1932) The reducing power of vegetable foods and its relation to vitamin C. The reducing substance in lemon juice. Z. Untersuch. Lebensmittel. 63: 1

  • Tonguc M, Griffiths PD (2004) Genetics relationships of Brassica vegetables determined using database derived simple sequence repeats. Euphityca 137:193–201

    Article  CAS  Google Scholar 

  • Viani P (1929) Trattato di orticoltura. Catania, Battiato editore, p 1217

    Google Scholar 

  • Wils RC, Kaufmann K (2017) Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochem Biophys Acta 1860:95–105

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out by University of Catania in collaboration with the Zhejiang Academy for Agricultural Sciences using landraces and breeding lines selected and conserved at Di3A. The authors are grateful to Dr. Roberto Lo Scalzo of the CREA-IAA of Milan for assistance with the biochemical analysis. This work was supported by the International Cooperation Project of Zhejiang Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Branca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branca, F., Chiarenza, G.L., Cavallaro, C. et al. Diversity of Sicilian broccoli (Brassica oleracea var. italica) and cauliflower (Brassica oleracea var. botrytis) landraces and their distinctive bio-morphological, antioxidant, and genetic traits. Genet Resour Crop Evol 65, 485–502 (2018). https://doi.org/10.1007/s10722-017-0547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-017-0547-8

Keywords

Navigation