Advertisement

Genetic Resources and Crop Evolution

, Volume 65, Issue 1, pp 255–269 | Cite as

Molecular and phenotypic diversity of ICARDA spring barley (Hordeum vulgare L.) collection

  • Reda Amezrou
  • Sanjaya GyawaliEmail author
  • Loubna Belqadi
  • Shiaoman Chao
  • Mustapha Arbaoui
  • Sujan Mamidi
  • Sajid Rehman
  • Avinash Sreedasyam
  • Ramesh Pal Singh Verma
Research Article

Abstract

Plant breeders are interested in using diverse genotypes in hybridization that can segregate for traits of importance with possibility of selection and genetic gain. Information on molecular and agro-morphological diversity helps the breeders reduce the effort for parental selection and helps the advancement of generations. A phenotypic and molecular diversity study, using 24 traits (agronomic and disease) and 6519 SNPs in a diverse collection of 336 spring barley genotypes, was carried out at Marchouch and Jemma Shiam research stations in Morocco. Based on structure and multivariate analyses, strong differentiation between the two- and six-row types were observed. The linkage disequilibrium (LD) decay of the current collection (for the combined population) was up to 3.58 cM (r 2 = 0.15) while LD decay were estimated 3.91 and 2.36 cM for two- and six-row barley, respectively. PCA of agro-morphological traits revealed grain per spike, net form of net blotch (NFNB), spot form of net blotch (SFNB), and 1000 kernel weight were the most discriminatory traits in the current collection. Association mapping in the two independent populations will be ideal for identification of markers, and QTL related to traits. The generated information on relatedness between individuals will help identify diverse genotypes for breeding programs.

Keywords

Barley Diversity Genetic Hordeum vulgare Phenotypic SNP Structure 

Notes

Acknowledgements

This manuscript is an output of research projects funded by CGIAR Research Program on Dryland Cereals (CRP-DC) and USAID-Linkage Program in ICARDA. The financial support to first author in the form of the CRP-DC scholarship is highly acknowledged. There is no financial or intellectual conflict of interest among the researchers involved in the current study. The authors extend thanks to Dr. Carrie Selin, Department of Plant Sciences, University of Manitoba, for editing and improving English of this manuscript. The authors are highly thankful to Dr. Carrie Selin, Dept. of Plant Sciences, U of Manitoba, for English editing.

Supplementary material

10722_2017_527_MOESM1_ESM.xlsx (172 kb)
Supplementary material 1 (XLSX 171 kb)
10722_2017_527_MOESM2_ESM.docx (250 kb)
Supplementary material 2 (DOCX 250 kb)

References

  1. Aslan S, Forsberg NEG, Hagenblad J, Leino MW (2015) Molecular genotyping of historical barley landraces reveals novel candidate regions for local adaption. Crop Sci 55:2766–2776. doi: 10.2135/cropsci2015.02.0119 CrossRefGoogle Scholar
  2. Ayoub M, Symons SJ, Edney MJ, Mather DE (2002) QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. Theor Appl Genet 105:237–247. doi: 10.1007/s00122-002-0941-1 CrossRefPubMedGoogle Scholar
  3. Badr A, Muller K, Schaefer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamani F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510. doi: 10.1093/oxfordjournals.molbev.a026330 CrossRefPubMedGoogle Scholar
  4. Baek HJ, Beharav A, Nevo E (2003) Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theor Appl Genet 106:397–410CrossRefPubMedGoogle Scholar
  5. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedGoogle Scholar
  6. Brantestam AK, von Bothmer R, Dayteg C, Rashal I, Tuvesson S, Weibull J (2006) Genetic diversity changes and relationships in spring barley (Hordeum vulgare L.) germplasm of Nordic and Baltic areas as shown by SSR markers. Genet Resour Crop Evol 54:749–758. doi: 10.1007/s10722-006-9159-4 CrossRefGoogle Scholar
  7. Chaabane R, El-Felah M, Salah HB, Abdelly C, Ramla D, Nada A, Saker M (2009) Molecular characterization of Tunisian barley (Hordeum vulgare L.) genotypes using microsatellites (SSRs) markers. Eur J Sci Res 36(1):6–15Google Scholar
  8. Chabane K, Ablett GA, Cordeiro GM, Valkoun J, Henry RJ (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barely. Genet Resour Crop Evol 52:903–909. doi: 10.1007/s10722-003-6112-7 CrossRefGoogle Scholar
  9. Chakravorty A, Ghosh PD, Sahu PK (2013) Multivariate analysis of phenotypic diversity of landraces of rice of West Bengal. Am J Exp Agric 3(1):110–123CrossRefGoogle Scholar
  10. Chen F, Chen D, Valles MP, Gao Z, Chen X (2009) Analysis of diversity in Chinese cultivated barley with simple sequence repeats: differences between eco-geographic populations. Biochem Genet 48(1):44–56PubMedGoogle Scholar
  11. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Mackay IJ, Powell W, O’Sullivan DM (2008) Association mapping of partitioning loci in barley. BMC Genet 9:16. doi: 10.1186/1471-2156-9-16 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Comadran J, Thomas WT, van Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, Romagosa I, Hackett CA, Russell JR (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187. doi: 10.1007/s00122-009-1027-0 CrossRefPubMedGoogle Scholar
  14. Earl DA, vonHoldt BM (2012) STRUCURE HARVERSTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361CrossRefGoogle Scholar
  15. Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM, Grando MS (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39. doi: 10.1186/1471-2229-13-39 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  17. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  18. FAOSTAT (2015). http://faostat3.fao.org (Verified in Feb 2, 2017)
  19. Feng ZY, Zhang LL, Zhang YZ, Ling HQ (2006) Genetic diversity and geographical differentiation of cultivated six-rowed naked barley landraces from the Qinghai-Tibet of China detected by SSR analysis. Genet Mol Biol 29:330–338CrossRefGoogle Scholar
  20. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefPubMedGoogle Scholar
  21. Franckowiak JD, Lundqvist U (1997) Barley genetics symposium 6, six-rowed spike 1, vrs1. Barley Genet Newsl 26:49–50Google Scholar
  22. Grando S, von Bothmer R, Ceccarelli S (2001) Genetic diversity of barley: use of locally adapted germplasm to enhance yield and yield stability of barley in dry areas. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. IPGRI/FAO/CABI Publishing, CAB Interantional, UK, pp 351–372Google Scholar
  23. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485CrossRefPubMedGoogle Scholar
  24. Gurung S, Mamidi S, Bonman JM, Jackson EW, Del Rio LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123(6):1029–1041CrossRefPubMedGoogle Scholar
  25. Gyawali S, Hegedus DD, Parkin IAP, Poon J, Higgins E, Horner K, Bekkaoui D, Coutu C, Buchwaldt L (2013) Genetic diversity and population structure in a world collection of Brassica napus accessions with emphasis on South Korea, Japan, and Pakistan. Crop Sci 53(4):1537–1545. doi: 10.2135/cropsci2012.10.0614 CrossRefGoogle Scholar
  26. Gyawali S, Harrington M, Durkin J, Horner K, Parkin IAP, Hegedus DD, Bekkaoui D, Buchwaldt L (2016) Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Mol Breed 36:72. doi: 10.1007/s11032-016-0496-5 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hamblin MT, Buckler ES, Jannink JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27(3):98–106CrossRefPubMedGoogle Scholar
  28. Hamza S, Ben Hamida W, Rebai A, Harrabi M (2004) SSR-based genetic diversity assessment among Tunisian winter barley and relationship with morphological traits. Euphytica 135:107–118. doi: 10.1023/B:EUPH.0000009547.65808.bf CrossRefGoogle Scholar
  29. Hayes PM, Castro A, Marquez-Cedillo L, Corey A, Henson C, Jones BL, Kling J, Mather D, Matu I, Rossi C, Sato K (2002) Genetic diversity for quantitatively inherited agronomic and malting quality traits. In: Von Bothmer R, Knüpffer H, van Hintum T, Sato K (eds) Diversity barley. Elsevier, AmsterdamGoogle Scholar
  30. Hou YC, Yan ZH, Wei YM, Zheng YL (2005) Genetic diversity in barley from west China based on RAPD and ISSR analysis. Barley Genet Newsl 35:9–22Google Scholar
  31. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332CrossRefPubMedPubMedCentralGoogle Scholar
  32. Iqbal MJ, Mamidi S, Ahsan R, Kianian SF, Coyne CJ, Hamama AA, Narina SS, Bhardwaj HL (2012) Population structure and linkage disequilibrium in Lupinus albus L. germplasm and its implication for association mapping. Theor Appl Genet 125(3):517–530CrossRefPubMedGoogle Scholar
  33. Jones E, Sullivan H, Bhattramakki D, Smith JSC (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371CrossRefPubMedGoogle Scholar
  34. Kertho A, Mamidi S, Bonman JM, McClean PE, Acevedo M (2015) Genome-wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces. PLoS ONE 10(6):e0129580. doi: 10.1371/journal.pone.0129580 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kjaer B, Jensen J (1996) Quantitative trait loci for grain yield and yield components in a cross between a six-rowed and a two rowed barley. Euphytica 90:39–48Google Scholar
  36. Lasa J, Igartua E (2001) Morphological and agronomical diversity patterns in the Spanish barley core collection. Hereditas 135(23):217–225PubMedGoogle Scholar
  37. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129CrossRefPubMedGoogle Scholar
  38. Lombardi M, Materne M, Cogan NOI, Rodda M, Daetwyler HD, Slater AT, Forster JW, Kaur S (2014) Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik.) cultivars and landraces using SNP markers. BMC Genet 15:150. doi: 10.1186/s12863-014-0150-3 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63CrossRefPubMedGoogle Scholar
  40. Malysheva-Otto LV, Ganal MW, Roder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mamo BE, Steffenson BJ (2015) Genome-wide association mapping of fusarium head blight resistance and agromorphological traits in barley landraces from Ethiopia and Eritrea. Crop Sci 55(4):1494–1512CrossRefGoogle Scholar
  42. Manjunatha T, Bisht IS, Bhat KV, Singh BP (2007) Genetic diversity in barley (Hordeum vulgare L. ssp. vulgare) landraces from Uttaranchal Himalaya of India. Genet Resour Crop Evol 54:55–65. doi: 10.1007/s10722-005-1884-6 CrossRefGoogle Scholar
  43. Marquez-Cedillo LA, Hayes PM, Jones BL, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich SE, Wesenberg DM (2000) QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 101:173–184CrossRefGoogle Scholar
  44. Marquez-Cedillo LA, Hayes PM, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich SM, Wesenberg DM (2001) The North American barley genome mapping project. QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 103:625–637CrossRefGoogle Scholar
  45. Massman J, Cooper B, Horsley R, Neate SM, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454CrossRefGoogle Scholar
  46. Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095–1106CrossRefPubMedGoogle Scholar
  47. McClean PE, Terpstra J, McConnell M, White C, Lee R, Mamidi S (2012) Population structure and genetic differentiation among the USDA common bean (Phaseolus vulgaris L.) core collection. Genet Resour Crop Evol 59(4):499–515CrossRefGoogle Scholar
  48. Munoz-Amatriaın M, Cuesta-Marcos A, Endelman JB, Comadran J, Bonman JM, Bockelman HE, Chao S, Russel J, Waugh R, Hayes PM, Muehlbauer GJ (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLoS ONE 9(4):e94688. doi: 10.1371/journal.pone.0094688 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  50. Orabi J, Backes G, Wolday A, Yahyaoui A, Jahoor A (2007) The horn of Africa as a centre of barley diversification and a potential domestication site. Theor Appl Genet 114:1117–1127. doi: 10.1007/s00122-007-0505-5 CrossRefPubMedGoogle Scholar
  51. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  52. Pandey M, Wagner C, Friedt W, Ordon F (2006) Genetic relatedness and population differentiation of Himalayan Hulless barley (Hordeum vulgare L.) landraces inferred with SSRs. Theor Appl Genet 113:715–729. doi: 10.1007/s00122-006-0340-0 CrossRefPubMedGoogle Scholar
  53. Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a worldwide spring barley collection. BMC Plant Biol 12:16. doi: 10.1186/1471-2229-12-16 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pillen K, Zacharias A, Lon L (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352. doi: 10.1007/s00122-003-1253-9 CrossRefPubMedGoogle Scholar
  55. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  56. Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt WR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS 98(20):1479–11484CrossRefGoogle Scholar
  57. Rodriguez M, Rau D, Sullivan D, Brown AHD, Papa R, Attene G (2012) Genetic structure and linkage disequilibrium in landrace populations of barley in Sardinia. Theor Appl Genet 125:171–184. doi: 10.1007/s00122-012-1824-8 CrossRefPubMedGoogle Scholar
  58. Rohlf FJ (2000) NTSYS-pc. Numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software, SetauketGoogle Scholar
  59. Saari EE, Prescott JM (1975) A scale for appraising the foliar intensity of wheat disease. Plant Dis Report 59:377–380Google Scholar
  60. Shakhatreh Y, Haddad N, Alravavah M, Gando S, Ceccarelli S (2010) Phenotypic diversity in wild barley (Hordeum vulgare L. ssp. spontaneum (C. Koch) Thell.) accessions collected in Jordan. Genet Resour Crop Evol 57:131–146. doi: 10.1007/s10722-009-9457-8 CrossRefGoogle Scholar
  61. Shewayrga H, Sopade PA (2011) Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands. J Ethnobiol Ethnomed 7:19. doi: 10.1186/1746-4269-7-19 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Slotta TAB, Brady L, Chao S (2008) High throughput tissue preparation for large-scale genotyping experiments. Mol Ecol Resour 8:83–87. doi: 10.1111/j.1471-8286.2007.01907.x CrossRefPubMedGoogle Scholar
  63. Struss P, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315CrossRefGoogle Scholar
  64. Sun D, Ren W, Sun G, Peng J (2011) Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley (Hordeum vulgare L.) germplasm. Euphytica 178:31–43. doi: 10.1007/s10681-010-0260-6 CrossRefGoogle Scholar
  65. Szalma SJ, Buckler ESIV, Snook ME, McMullen MD (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333CrossRefPubMedGoogle Scholar
  66. Tamang P, Neupane A, Mamidi S, Friesen T, Brueggeman R (2015) Association mapping of seedling resistance to spot form net blotch in a worldwide collection of barley. Phytopathology 105(4):500–508CrossRefPubMedGoogle Scholar
  67. Teulat B, Merah O, Souyris I, This D (2001) QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor Appl Genet 103:774–787. doi: 10.1007/s001220100619 CrossRefGoogle Scholar
  68. Tian F, Bradbury P, Brown P, Hung H, Sun Q, Flint-Garcia S, Rocheford T, McMullen M, Holland J, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162. doi: 10.1038/ng.746 CrossRefPubMedGoogle Scholar
  69. Turuspekov Yerlan, Ormanbekova Danara, Rsaliev Aralbek, Abugalieva Saule (2016) Genome-wide association study on stem rust resistance in Kazakh spring barley lines. BMC Plant Biol 16(1):13CrossRefGoogle Scholar
  70. Usubaliev B, Brantestam AK, Salomon B, Garkava-Gustavson L, Bothmer R (2013) Genetic diversity in farmer grown spring barley material from Kyrgyzstan. Genet Resour Crop Evol 60:1843–1858. doi: 10.1007/s10722-013-9959-2 CrossRefGoogle Scholar
  71. Wang L, Sun G, Ren X, Li C, Liu L, Wang Q, Du B, Sun D (2016a) QTL underlying some agronomic traits in barley detected by SNP markers. BMC Genet 17:103. doi: 10.1186/s12863-016-0409-y CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang Y, Ren X, Sun D, Sun G (2016b) Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley. Sci Rep 6:36122. doi: 10.1038/srep36122 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 35:235–254CrossRefPubMedGoogle Scholar
  74. William M, Dorocicz I, Kasha KJ (1997) Use of microsatellite DNA to distinguish malting and non-malting barley cultivars. J Am Soc Brew Chem 55:107–111Google Scholar
  75. Xue DW, Zhou MX, Zhang XQ, Chen S, Wei K, Zeng FR, Mao Y, Wu FB, Zhang GP (2010) Identification of QTLs for yield and yield components of barley under different growth conditions. J Zhejiang Univ Sci B 11(3):169–176. doi: 10.1631/jzus.B0900332 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley, 3rd edn. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Reda Amezrou
    • 1
  • Sanjaya Gyawali
    • 1
    • 5
    Email author
  • Loubna Belqadi
    • 2
  • Shiaoman Chao
    • 3
  • Mustapha Arbaoui
    • 2
  • Sujan Mamidi
    • 4
  • Sajid Rehman
    • 1
  • Avinash Sreedasyam
    • 4
  • Ramesh Pal Singh Verma
    • 1
  1. 1.BIGM ProgramInternational Center for Agricultural Research in the Dry Areas (ICARDA)RabatMorocco
  2. 2.IAV Hassan IIRabatMorocco
  3. 3.USDA-ARSFargoUSA
  4. 4.Hudson Alpha Institute for BiotechnologyHuntsvilleUSA
  5. 5.Department of Plant SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations