Genetic Resources and Crop Evolution

, Volume 64, Issue 8, pp 2145–2159 | Cite as

Multivariate analysis of morphological diversity among closely related Daucus species and subspecies in Tunisia

  • Najla Mezghani
  • Jihene Ben Amor
  • David M. Spooner
  • Phillip W. Simon
  • Neila Mezghani
  • Hiba Boubaker
  • Ahmed M’rad Namji
  • Slim Rouz
  • Cherif Hannachi
  • Mohamed Neffati
  • Neji Tarchoun
Research Article


The genus Daucus includes about 20–25 species worldwide. Northern Africa represents a major center of diversity of Daucus, with Tunisia thought to contain 11 species and seven subspecies. The greatest taxonomic problems, however, and the greatest economic importance relative to immediate use in breeding, is in a group of species and subspecies in the Daucus carota L. clade, all containing 2n = 18 chromosomes. We assessed morphological diversity from a Daucus L. germplasm collection of nine individuals each from 45 accessions (405 individuals in total), at the National Gene Bank of Tunisia, of the following wild and one cultivated members of this clade: D. carota subsp. capillifolius (Gilli) Arbizu, D. carota subsp. carota, D. carota subsp. gummifer (Syme) Hook. f., D. carota subsp. sativus (Hoffm.) Arcangeli (cultivated), D. sahariensis Murb., and putative hybrids of D. carota subsp. carota and subsp. capillifolius. A prior study showed the effectiveness of fruit characters to identify several species and subspecies in the collection, but distinction between some closely related D. carota subspecies was difficult. In order to resolve the taxonomic classification, we tested 32 quantitative and qualitative morphological characters from leaves, stems and flowers on a field collection of 45 accessions corresponding to the different species/subspecies. The Shannon–Weaver diversity (H’) index was used to study the phenotypic diversity. The estimated H’ ranged from monomorphic for umbel type, position of involucral bracts on primary umbel, anther color, and symmetry of peripheral flowers to highly polymorphic for other traits. The highest (0.98) and the lowest (0.26) H’ values were recorded for flowering pattern within plants and foliage coverage. Multivariate analyses of principal components and dendrograms of all data and canonical discriminate analysis of the quantitative data supported the subdivision of the Daucus collection into five groups with various degrees of distinctness: (1) D. sahariensis, (2) D. carota subsp. capillifolius, (3) D. carota subsp. carota, very similar to (4) D. carota subsp. gummifer, and (5) D. carota subsp. sativus intergrading with putative hybrids between D. carota subsp. capillifolius and D. carota subsp. carota. Individual character state distribution plots provide useful characters and insights into taxonomic problems in the D. carota clade that we here discuss in reference to ongoing molecular studies in Daucus.


Daucus Multivariate analysis Subspecies Taxonomy 



North Central Regional Plant Introduction Station


National Gene Bank of Tunisia


Compliance with ethical standards

Conflict of interest

None of the authors have any financial or personal relationship that could inappropriately influence the work submitted for publication.


  1. Agrawal RC, Behera D, Saxena S (2007) Genebank information management system (GBIMS). Comput Electron Agr 59:90–96CrossRefGoogle Scholar
  2. Al Khanjari S, Filatenko AA, Hammer K, Buerkert A (2008) Morphological spike diversity of Omani wheat. Genet Resour Crop Evol 55:1185–1195CrossRefGoogle Scholar
  3. Arbizu C, Ruess H, Senalik D, Simon P, Spooner DM (2014a) Phylogenomics of the carrot genus (Daucus, Apiaceae). Am J Bot 101:1666–1685CrossRefPubMedGoogle Scholar
  4. Arbizu C, Reitsma KR, Simon PW, Spooner DM et al (2014b) Morphometrics of Daucus (Apiaceae): a counterpart to a phylogenomic study. Am J Bot 101:2005–2016CrossRefPubMedGoogle Scholar
  5. Arbizu C, Simon PW, Martínez-Flores F, Ruess H, Crespo MB, Spooner DM (2016a) Integrated molecular and morphological studies of the Daucus guttatus complex (Apiaceae). Syst Bot 41:479–492CrossRefGoogle Scholar
  6. Arbizu CI, Ellison SL, Senalik D, Simon PW, Spooner DM (2016b) Genotyping-by-sequencing provides the discriminating power to investigate the subspecies of Daucus carota (Apiaceae). BMC Evol Biol 16:234CrossRefPubMedPubMedCentralGoogle Scholar
  7. Banasiak Ł, Wojewódzka A, Baczyński J, Reduron J-P, Piwczyński M, Kurzyna-Młynik R, Gutaker R, Czarnocka-Cieciura A, Kosmala-Grzechnik S, Spalik K (2016) Phylogeny of Apiaceae subtribe Daucinae and the taxonomic delineation of its genera. Taxon 65:563–585CrossRefGoogle Scholar
  8. Bradeen JM, Bach IC, Briard M, le Clerc V, Grzebelus D, Senalik DA, Simon PW (2002) Molecular diversity analysis of cultivated carrot (Daucus carota L.) and wild Daucus populations reveals a genetically nonstructured composition. J Am Soc Hortic Sci 127:383–391Google Scholar
  9. DeLacy IH, Skovmand B, Huerta J (2000) Characterization of Mexican wheat landraces using agronomically useful attributes. Genet Resour Crop Evol 47:591–602CrossRefGoogle Scholar
  10. Drzewiecki J, Delgado-Licon E, Haruenkit R, Pawelzik E, Martin-Belloso O, Park YS, Jung ST, Trakhtenberg S, Gorinstein S (2003) Identification and differences of total proteins and their soluble fractions in some pseudocereals based on electrophoretic patterns. J Agr Food Chem 51:7798–7804CrossRefGoogle Scholar
  11. Eticha F, Bekele E, Belay G, Börner A (2005) Phenotypic diversity in durum wheat collected from Bale and Wello regions of Ethiopia. Plant Genet Resour 3(1):35–43CrossRefGoogle Scholar
  12. FAO (1997) The state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  13. Freville H, Justy F, Olivieri I (2001) Comparative allozyme and microsatellite population structure in a narrow endemic plant species, Centaurea corymbosa Pourret (Asteraceae). Mol Ecol 10:879–889CrossRefPubMedGoogle Scholar
  14. Hauser TP, Bjørn GK (2001) Hybrids between wild and cultivated carrots in Danish carrot fields. Genet Resour Crop Evol 48:499–506CrossRefGoogle Scholar
  15. Iorizzo M, Senalik DA, Ellison SL, Grzebelus D, Cavagnaro PF, Allender C, Brunet J, Spooner DM, Van Deynze A, Simon PW (2013) Genetic structure and domestication of carrot (Daucus carota subsp. sativus L.) (Apiaceae). Am J Bot 100:930–938CrossRefPubMedGoogle Scholar
  16. IPGRI (1998) Descriptors for wild and cultivated carrot (Daucus carota L.). International Plant Genetic Resources Institute, RomeGoogle Scholar
  17. Jaradat AA, Shahid M, Al Maskri AY (2004) Genetic diversity in the Batini barley landrace from Oman: I. Spike and seed quantitative and qualitative traits. Crop Sci 44:304–315CrossRefGoogle Scholar
  18. Krickl M (1961) Karotten: zur Frage der Verkreuzung mit der wilden Karotte. Saatgut-Wirtschaft 13:135–136Google Scholar
  19. Le Floc’h E, Boulos L, Vela E (2010) Catalogue synonymique commenté de la flore de Tunisie. Banque Nationale des Gènes de la Tunisie, TunisGoogle Scholar
  20. May B (1992) Starch gel electrophoresis of allozymes. In: Hoelzel AR (ed) Molecular genetic analysis of populations: a practical approach. Oxford University Press, Oxford, pp 1–27Google Scholar
  21. McCollum GD (1975) Interspecific hybrid Daucus carota × D. capillifolius. Bot Gaz (Chicago, Ill) 136:201–206CrossRefGoogle Scholar
  22. McCollum GD (1977) Hybrids of Daucus gingidium with cultivated carrots (D. carota subsp. sativus) and D. capillifolius. Bot Gaz (Chicago, Ill) 138:56–63CrossRefGoogle Scholar
  23. Mengistu DK, Kiros AY, Pè ME (2015) Phenotypic diversity in Ethiopian durum wheat (Triticum turgidum var. durum) landraces. Crop J 3:190–199CrossRefGoogle Scholar
  24. Mezghani N, Zaouali I, Bel Amri W, Rouz S, Simon PW, Hannachi C, Ghrabi Z, Neffati M, Bouzbida B, Spooner DM (2014) Fruit morphological descriptors as a tool for discrimination of Daucus L. germplasm. Genet Resour Crop Evol 61:499–510CrossRefGoogle Scholar
  25. Onno M (1937) Die Wildformen von Daucus sect. carota. Beih Bot Zentralbl 56(B):83–136Google Scholar
  26. Peterson CE, Simon PW (1986) Carrot Breeding. In: Basset MJ (ed) Breeding vegetable crops. AVI Publishing Company, Westport, pp 321–356Google Scholar
  27. Pottier Alapetite G (1979) Daucus. Flore de la Tunisie, Angiospermes-Dicotyledones, Apetales, Dialypetales. Imprimerie Officielle de la République Tunisienne, Tunis, pp 615–621Google Scholar
  28. Rao NK, Hanson J, Dulloo ME, Ghosh K, Nowell D, Larinde M (2006) Manuel de manipulation des semences dans les banques de gènes. Manuels pour les banques de gènes No. 8. Bioversity International, RomeGoogle Scholar
  29. Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization? Crit Rev Pl Sci 12:213–241Google Scholar
  30. Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable Umbelliferae. CABI Publishing, New YorkGoogle Scholar
  31. Ruduron J-P (2007) Ombellifères de France, vol 2. Société botanique du centre Ouest, Nercillac, p 564Google Scholar
  32. Saenz de Rivas C, Heywood VH (1974) Estudio preliminar sobre los Daucus en España peninsular. An Inst Bot Cavanilles 31:97–118Google Scholar
  33. Sáenz Laín C (1981) Research on Daucus L. (Umbelliferae). Actas III Congr ÓPTIMA. An Jard Bot Madr 37:481–534Google Scholar
  34. SAS Institute (2012) JMP, version 10.0.0. SAS Inst., Cary, NCGoogle Scholar
  35. Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69CrossRefPubMedGoogle Scholar
  36. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  37. Small E (1978) A numerical taxonomic analysis of the Daucus carota complex. Canad J Bot 56:248–276CrossRefGoogle Scholar
  38. Spalik K, Downie SR (2007) Intercontinental disjunctions in Cryptotaenia (Apiaceae, Oenantheae): an appraisal using molecular data. J Biogeogr 34:2039–2054CrossRefGoogle Scholar
  39. Spooner DM, van Treuren R, de Vicente MC (2005) Molecular markers for genebank management. IPGRI technical bulletin no. 10. International Plant Genetic Resources Institute, RomeGoogle Scholar
  40. Spooner DM, Rojas P, Bonierbale M, Mueller LA, Srivastav M, Senalik D, Simon PW (2013) Molecular phylogeny of Daucus (Apiacaeae). Syst Bot 38:850–857CrossRefGoogle Scholar
  41. Spooner DM, Widrlechner MP, Reitsma KR, Palmquist DE, Grabi-Gammar Z, Neffati M, Bouzbida B, Ouabbou H, El Koudrim M, Simon PW (2014) Reassessment of practical species identifications of the USDA Daucus carota germplasm collection: morphological data. Crop Sci 54:1–13CrossRefGoogle Scholar
  42. Spooner DM, Ruess H, Iorizzo M, Senalik D, Simon PW (2017) Entire plastid phylogeny of the carrot genus (Daucus, Apiaceae); concordance to nuclear data and mitochondrial and nuclear DNA insertions to the plastid. Am J Bot 104(2):296–312CrossRefPubMedGoogle Scholar
  43. Sudré CP, Gonçalves LSA, Rodrigues R, do Amaral Júnior AT, Riva-Souza EM, Bento Cdos S (2010) Genetic variability in domesticated Capsicum ssp. as assessed by morphological and agronomic data in mixed statistical analysis. Genet Mol Res 9:283–294CrossRefPubMedGoogle Scholar
  44. Sun M, Wong KC (2001) Genetic structure of three orchid species with contrasting breeding systems using RAPD and allozyme markers. Am J Bot 88:2180–2188CrossRefPubMedGoogle Scholar
  45. Tavares AC, Loureiro J, Castro S, Coutinho AP, Paiva J, Cavaleiro C, Salgueiro L, Canhoto JM (2014) Assessment of Daucus carota L. (Apiaceae) subspecies by chemotaxonomic and DNA content analyses. Biochem Syst Ecol 55:222–230CrossRefGoogle Scholar
  46. Teklu Y, Hammer K, Huang X, Röder M (2006) Analysis of microsatellite diversity in Ethiopian durum wheat landraces. Genet Resour Crop Evol 53:1115–1126CrossRefGoogle Scholar
  47. Vaughan JG, Geissler CA (2009) The new Oxford book of food plants. Oxford University Press, OxfordGoogle Scholar
  48. Vivek BS, Simon P (1999) Phylogeny and relationships in Daucus based on restriction fragment length polymorphisms (RFLPs) of the chloroplast and mitochondrial genomes. Euphytica 105:183–189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Najla Mezghani
    • 1
  • Jihene Ben Amor
    • 2
  • David M. Spooner
    • 3
  • Phillip W. Simon
    • 3
  • Neila Mezghani
    • 4
  • Hiba Boubaker
    • 2
  • Ahmed M’rad Namji
    • 2
  • Slim Rouz
    • 5
  • Cherif Hannachi
    • 2
  • Mohamed Neffati
    • 6
  • Neji Tarchoun
    • 2
  1. 1.Banque Nationale de GènesBoulevard du Leader Yasser ArafatTunisTunisia
  2. 2.Institut Supérieur Agronomique de Chott Mariem4042 SousseTunisia
  3. 3.USDA-ARS, Vegetable Crops Research Unit, Department of HorticultureUniversity of WisconsinMadisonUSA
  4. 4.Centre de recherche LICEFTELUQ universityMontréal (Québec) H2S 3L5Canada
  5. 5.Institut Supérieur Agronomique de Mograne1121 ZaghouanTunisia
  6. 6.Institut des Régions AridesMedenineTunisia

Personalised recommendations