Genetic Resources and Crop Evolution

, Volume 64, Issue 8, pp 2035–2047 | Cite as

Seed yield and protein content in the Weibullsholm Pisum collection

  • Svein Øivind Solberg
  • Flemming Yndgaard
  • Gert Poulsen
  • Roland von Bothmer
Research Article


In Europe, agriculture is highly dependent on imported soybean from South America. Potential alternative sources are protein from peas (Pisum sativum L.) or more local sources like other grain legumes or rapeseed meal (Brassica napus L. subsp. oliefera). These are also good rotation crops. For farmers, protein and yield are key traits. In this study, a dataset containing 37 descriptors and 1222 accessions from a germplasm collection of P. sativum was analyzed. Scatterplot matrixes and tree regression analysis were used to establish the relationship among descriptors and to identify the most important predictors for seed yield and protein content respectively. Number of flowers per plant was shown to be important for seed yield prediction, followed by number of inflorescences per plant and number of pods per plant. In general, a negative correlation between seed protein content and seed yield was detected, but a few accessions that had both high seed yield and high protein content were identified. The results are discussed in relation to crop improvement and the importance of maintaining germplasm collections.


Genetic resources evaluation Pisum sativum Protein Tree regression Seed yield 



This article is dedicated to Stig Blixt. We would like to thank Anna Palmé and Ulrika Carlson-Nilsson for valuable comments. The work has been supported by the Nordic Council of Ministers.


  1. Altieri MA, Funes-Monzote FR, Petersen P (2012) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13CrossRefGoogle Scholar
  2. Andersen S, Yndgaard F (1986) Gene banks—A source for plant breeders. Dan J Agron 1986(special issue):37–47Google Scholar
  3. Bastianelli D, Grosjean F, Peyronnet C, Duparque M, Régnier JM (1998) Feeding value of pea (Pisum sativum L.) 1. Chemical composition of different categories of pea. Anim Sci 67:609–619CrossRefGoogle Scholar
  4. Betts RA, Hawkins E (2014) Climate projections. In: Jackson M, Ford-Lloyd B, Parry M (eds) Plant genetic resources and climate change. CABI, Wallingford, pp 38–60Google Scholar
  5. Blixt S (1978) Some genes of importance for the evolution of the pea in cultivation (and a short presentation of the Weibullsholm P.G.A. pea collection). In: Zeven AC, van Harten AM (eds) Proceedings of the conference: broadening the genetic base of crops.centre for agricultural publishing and documentation, Wageningen, 3–7 July 1978, pp 195–203Google Scholar
  6. Blixt S, Williams JT (1982) Documentation of genetic resources: a model. International Board for Genetic Resources, RomeGoogle Scholar
  7. Burstin J, Gallardo K, Mir RR, Varshney RK, Duc G, Burstin J, Gallardo K, Duc G (2011). Improving protein content and nutrition quality. In: Biology and breeding of food legumes. CABI, Wallingford (Chapter 20)Google Scholar
  8. Costanzo A, Bàrberi P (2014) Functional agrobiodiversity and agroecosystem services in sustainable wheat production, a review. Agron Sustain Dev 34:327–348CrossRefGoogle Scholar
  9. CRAN (2015) Comprehensive R archive network. Accessed 19 Nov 2015
  10. Crawley MJ (2005) Statistics. Wiley, ChichesterCrossRefGoogle Scholar
  11. Dias JCS (2010) Impact of improved vegetable cultivars in overcoming food insecurity. Euphytica 176:125–136CrossRefGoogle Scholar
  12. Everitt B, Hothorn T (2011) An introduction to applied multivariate analysis with R. Springer, New YorkCrossRefGoogle Scholar
  13. FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  14. Frimpong A, Sinha A, Tar’an B, Warkentin TD, Gossen BD, Chibbar RN (2009) Genotype and growing environment influence chickpea (Cicer arietinum L.) seed composition. J Sci Food Agric 89:2052–2063CrossRefGoogle Scholar
  15. Goldberg K, Iglewicz B (1992) Bivariate extensions of the boxplot. Technometrics 34:307–320CrossRefGoogle Scholar
  16. Gottschalk W, Muller HP, Wolff G (1976) Further investigations on the genetic control of seed protein production in Pisum mutants. In: Proceedings of a research co-ordination meeting. International Atomic Energy Agency, Hahnenklee, 5–9 May 1975, pp 167–187Google Scholar
  17. GRIN Taxonomy (2017) Advanced query of GRIN Taxonomy species data. (last retrieved 17 Jan 2017)
  18. Irzykowska L, Wolko B (2004) Interval mapping of QTLs controlling yield-related traits and seed protein content in Pisum sativum. J Appl Genet 45:297–306PubMedGoogle Scholar
  19. Jermyn WA, Slinkard AB (1976) Protein yield relationships in field peas. Can J Plant Sci 56:427Google Scholar
  20. Jha AB, Arganosa G, Tar’an B, Diederichsen A, Warkentin TD (2013) Characterization of 169 diverse pea germplasm accessions for agronomic performance, Mycosphaerella blight resistance and nutritional profile. Genet Resour Crop Evol 60:747–761CrossRefGoogle Scholar
  21. JIC (2016) John Innes Centre, Databases. Accessed 10 June 2016
  22. Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Ellis THN, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol. doi: 10.1186/1471-2148-10-44 PubMedPubMedCentralGoogle Scholar
  23. Kjeldahl J (1883) Neue methode zur bestimmung des stickstoffs in organischen körpern (new method for the determination of nitrogen in organic substances). Z Anal Chem 22:366–383CrossRefGoogle Scholar
  24. Koivunena E, Partanenb K, Perttiläc S, Palanderd S, Tuunainena P, Valaja J (2016) Digestibility and energy value of pea (Pisum sativum L.), faba bean (Vicia faba L.) and blue lupin (narrow-leaf) (Lupinus angustifolius) seeds in broilers. Anim Feed Sci Technol 218:120–127CrossRefGoogle Scholar
  25. Krajewski P, Bocianowski J, Gawłowska M, Kaczmarek Z, Pniewski T, Święcicki W, Wolko B (2012) QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183:323–336CrossRefGoogle Scholar
  26. Lehmann CO (1954) Das morphologische system der saaterbsen (Pisum sativum L. em. Gov. ssp. sativum). Züchter 24:316–337Google Scholar
  27. Lehmann CO, Blixt S (1984) Artificial infraspecific classification in relation to phenotypic manifestation of certain genes in Pisum. Agri Hort Genet 42:49–74Google Scholar
  28. Maxted N, Ambrose M (2000) Peas (Pisum L.). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the mediterranean. Kluwer Academic Publishers, Dordrecht, pp 181–190Google Scholar
  29. Mossberg R (1969) Evaluation of protein quality and quantity by dye-binding capacity: a tool in plant breeding. New approaches to breeding for improved plant protein. In: Proceedings Panel Röstånga, International atomic energy agency, Vienna, p 151Google Scholar
  30. Munck L (1976) Aspects of the selection, design and use of high lysine cereals. In: Proceedings of a research co-ordination meeting,International Atomic Energy Agency,Vienna, 5–9 May 1975, pp. 3–17Google Scholar
  31. Myers JR, Jaggett JR, Lamborn C (2001) Origins, history, and genetic improvement of the snap pea (Pisum sativum L.). Plant Breed Rev 21:93–138Google Scholar
  32. Nierenberg D (2013) Agriculture: growing food—and solutions. In: Assadourian E, Prugh T (eds) State of the world. Is sustainability still possible?, Island Press, Washington, DC, pp. 190–200Google Scholar
  33. Nordic Genetic Resource Center (2016) NordGen seed request. Accessed 17 June 2016
  34. O’Neill HVM, Rademacherb M, Mueller-Harveyc I, Stringanoc E, Kightleyd S, Wiseman J (2012) Standardised ileal digestibility of crude protein and amino acids of UK-grown peas and faba beans by broilers. Anim Feed Sci Technol 175:158–167CrossRefGoogle Scholar
  35. Palander S, Laurinen P, Perttilä S, Valaja J, Partanen K (2006) Protein and amino acid digestibility and metabolizable energy value of pea (Pisum sativum), faba bean (Vicia faba) and lupin (Lupinus angustifolius) seeds for turkeys of different age. Anim Feed Sci Technol 127:89–100CrossRefGoogle Scholar
  36. Peltonen-Sainio P, Niemi JK (2012) Protein crop production at the northern margin of farming: to boost, or not to boost. Agr Food Sci 21:370–383Google Scholar
  37. PGene (2016) Pisum Genetics association gene list. Accessed 10 June 2016
  38. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. Accessed 20 Nov 2015
  39. Regnell M (2001) Gård, åker och äng – den centrala platsens triviala bas. In: Larsson L (ed) Uppåkra centrum i analys och rapport, Uppåkrastudier 4, Acta Archaeologica Lundensia ser In 8, no 36, Almqvist & Wiksell International, Stockholm, pp 113–122 (in Swedish)Google Scholar
  40. Santalla M, Amurrio JM, De Ron AM (2001) Food and feed potential breeding value of green, dry and vegetable pea germplasm. Can J Plant Sci 81:601–610CrossRefGoogle Scholar
  41. Sibhatu B, Berhe H, Gebrekorkos G, Abera K (2016) Determination of planting spacing for improved yield and yield components of Dekoko (Pisum sativum var. abyssinicum) at Raya Valley, Northern Ethiopia. Afr J Plant Sci 10:157–161. doi: 10.5897/AJPS2016.1428 CrossRefGoogle Scholar
  42. Sjödin J (1997) Trindsäd. In: Olsson G (ed) Den svenska växtförädlingens historia. Kungl. Skogs-och Lantbruksakademien, Stockholm, pp 215–222 (in Swedish)Google Scholar
  43. Sloth PR, Hansen UL, Karg S (2012) Viking age garden plants from southern Scandinavia—diversity, taphonomy and cultural aspects. Dan J Archaeol 1:27–38. doi: 10.1080/21662282.2012.750445 CrossRefGoogle Scholar
  44. Steenfeldt S, González E, Bach Knudsen KE (2003) Effects of inclusion with blue lupins (Lupinus angustifolius) in broiler diets and enzyme supplementation on production performance, digestibility and dietary AME content. Anim Feed Sci Technol 110:185–200CrossRefGoogle Scholar
  45. Stoddard F, Hovinen S, Kontturi M, Lindström K, Nykänen A (2009) Legumes in Finnish agriculture: history, present status and future prospects. Agric Food Sci 18:191–205CrossRefGoogle Scholar
  46. Swiecicki WK, Blazczak P, Hauke J, Mejza S (1981) Inheritance of protein content in pea. III Correlation between protein content and seed yield. Pisum Newsl 13:52–53Google Scholar
  47. Swieciki WK (1980) Pea genebank in Poland. Pisum Newsl 44:15–16Google Scholar
  48. Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Bing D (2004) Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica 136:297–306CrossRefGoogle Scholar
  49. Tayeh N, Aubert G, Pilet-Nayel ML, Lejeune-Hénaut I, Warkentin TD, Burstin J (2015) Genomic tools in pea breeding programs: status and perspectives. Front Plant Sci 6:1037. doi: 10.3389/fpls.2015.01037 PubMedPubMedCentralGoogle Scholar
  50. Udy DC (1971) Improved method for estimating protein. J Am Oil Chem Soc 48:29ACrossRefPubMedGoogle Scholar
  51. Venaples WN, Ripley BD (2002) Modern applied statistics with S. Springer, New YorkCrossRefGoogle Scholar
  52. Walters C (2004) Principles for preserving germplasm in genebanks. In: Guerrant E, Havens K, Maunder M (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Covelo, pp 442–453Google Scholar
  53. Zohary D, Hopf M (1973) Domestication of pulses in the Old World. Science 182:887–894CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Svein Øivind Solberg
    • 1
  • Flemming Yndgaard
    • 2
  • Gert Poulsen
    • 3
  • Roland von Bothmer
    • 4
  1. 1.World Vegetable CenterShanhua, TainanTaiwan
  2. 2.Nordic Genetic Resource CenterAlnarpSweden
  3. 3.Seed SaversCopenhagenDenmark
  4. 4.Swedish University of Agricultural SciencesAlnarpSweden

Personalised recommendations