Skip to main content
Log in

Phylogenetic position of the disjunct species Musa ornata (Musaceae): first approach to understand its distribution

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Musa L. commonly known as the banana group is one of the most important and oldest food crops of humankind. Among the wild relatives with ornamental interest in the genus, Musa ornata Roxb. shows a disjunct distribution between Asia and North America (Mexico). The wild occurrence of this species in Mexico has led to speculation about the evolutionary relationships with its Asian relatives. This study examined the phylogenetic relationships between intercontinental specimens of this species and, based on registered evidence, explored the more likely hypothesis about the origins of its distribution. The phylogeny of intercontinental specimens, along with other representatives of the same genus, was carried out using three molecular markers (ITS, trnL-F, and atpB-rbcL) and applying three phylogenetic reconstruction methods: maximum parsimony, maximum likelihood, and Bayesian inference. The genetic analysis of the combined dataset grouped together all the Mexican and most Asian specimens, but the monophyly of the species was not supported. The relationships suggest that Mexican populations may have originated from an Asian invasion. However, several studies and historical documents suggest the presence of Musa in America long before the arrival of Europeans. Based on its current distribution, phylogenetic evidence, and fossil record, this species’ disjunct distribution could be explained in terms of an ancestral distribution range that encompassed America and Asia, followed by its subsequent restriction to the Old World and a secondary dispersal by humans. However, further studies are necessary to shed more light on the origins of this disjunct distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta J (1950) Historia natural y moral de las Indias. Biblioteca de Autores Españoles, Madrid

    Google Scholar 

  • Altschul FS, Gish W, Miller W, Myers WM, Lipman JD (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bakker FT, Culham A, Gomez-Martinez R, Carvalho J, Compton J, Dawtrey R, Gibby M (2000) Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)—trnF (GAA) regions. Mol Biol Evol 17:1146–1155

    Article  CAS  PubMed  Google Scholar 

  • Baldwin BG, Sanderson JM, Porter MJ, Wojciechowski MF, Campbell SC, Donoghue JM (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 82:247–277

    Article  Google Scholar 

  • Bassler H (1926) Musa in tropical America. J New York Bot Gard 27:49–54

    Google Scholar 

  • Bekele E, Shigeta M (2011) Phylogenetic relationships between Ensete and Musa species as revealed by the trnT-trnF region of cpDNA. Genet Resour Crop Evol 58:259–269

    Article  CAS  Google Scholar 

  • Berry EW (1925) A banana in the tertiary of Colombia. Am J Sci 10:530–537

    Article  Google Scholar 

  • Blaum N, Wichmann MC (2007) Short-term transformation of matrix into hospitable habitat facilitates gene flow and mitigates fragmentation. J Anim Ecol 76:1116–1127

    Article  PubMed  Google Scholar 

  • Bullock JM, Kenward RE, Hails RS (2002) Dispersal ecology. Blackwell Science, Oxford

    Google Scholar 

  • Burgos-Hernández M, González D, Castillo-Campos G (2013) Genetic diversity and population genetic structure of wild banana Musa ornata (Musaceae) in Mexico. Plant Syst Evol 299:1899–1910

    Article  Google Scholar 

  • Chanderbali AS, van der Werff H, Renner SS (2001) Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann Mo Bot Gard 88:104–134

    Article  Google Scholar 

  • Cheesman EE (1949) Classification of the bananas: critical notes on species: Musa ornata. Kew Bull 4:24–28

    Article  Google Scholar 

  • Christelová P, Valárik M, Hřibová E, De Langhe E, Doležel J (2011) A multi gene sequence-based phylogeny of the Musaceae (banana) family. BMC Evol Biol 11:103. doi:10.1186/1471-2148-11-103

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox CB, Moore PD (2005) Biogeography: an ecological and evolutionary approach. Blackwell Publishing, Oxford

    Google Scholar 

  • Daniells J, Jenny C, Karamura D, Tomekpe K (2001) Musalogue: a catalogue of Musa germplasm. Diversity in the genus Musa. International Network for the Improvement of Banana and Plantain, Montpellier

    Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679

    Article  CAS  PubMed  Google Scholar 

  • Davis CC, Bell CD, Mathews S, Donoghue MJ (2002) Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. PNAS 99:6833–6837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CC, Fritsch PW, Bell CD, Mathews S (2004) High-latitude tertiary migrations of an exclusively tropical clade: evidence from Malpighiaceae. Int J Plant Sci 165:107–121

    Article  Google Scholar 

  • De Candolle A (1886) Origin of cultivated plants. D. Appleton, New York

    Book  Google Scholar 

  • De Queiroz A (2005) The resurrection of oceanic dispersal in historical biogeography. Trends Ecol Evol 20:68–73

    Article  PubMed  Google Scholar 

  • Deng J, Gao G, Zhang Y, He F, Luo X, Zhang F, Liao X, Shafique AK, Yang R (2016) Phylogenetic and ancestral area reconstruction of Zingiberales from plastid genomes. Biochem Syst Ecol 66:123–128

    Article  CAS  Google Scholar 

  • Donoghue MJ, Smith SA (2004) Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos T Roy Soc B 359:1633–1644

    Article  Google Scholar 

  • Doyle JA, Le Thomas A (1997) Phylogeny and geographic history of Annonaceae. Geogr Phys Quatern 51:353–361

    Google Scholar 

  • Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package). Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Fischer TC, Butzmann R, Meller B, Rattei T, Newman M, Hölscher D (2009) The morphology, systematic position and inferred biology of Spirematospermum—an extinct genus of Zingiberales. Rev Palaeobot Palyno 157:391–426

    Article  Google Scholar 

  • Friis EM (1988) Spirematospermum chandlerae sp. nov., an extinct species of Zingiberaceae from the North American Cretaceous. Tert Res 9:7–12

    Google Scholar 

  • Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Gawel NJ, Jarret RL (1991) Chloroplast DNA restriction fragment length polymorphisims in Musa species. Theor Appl Genet 81:783–786

    Article  CAS  PubMed  Google Scholar 

  • Gawel NJ, Jarret RL, Whittemore AP (1992) Restriction fragment length polymorphism (RFLP)-based phylogenetic analysis of Musa. Theor Appl Genet 84:286–290

    CAS  PubMed  Google Scholar 

  • Gayral P, Blondin L, Guidolin O, Carreel F, Hippolyte I, Perrier X, Iskra-Caruana M-L (2010) Evolution of endogenous sequences of Banana Streak Virus: what can we learn from banana (Musa sp.) evolution? J Virol 84:7346–7359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goloboff PA (1994) NONA: A Tree Searching Program. program and documentation. Fundacion e Instituto Miguel Lillo, Tucuman. http://www.cladistics.com. Accessed 15 June 2015  

  • Goloboff PA, Farris JS, Nixon K (2000) TNT tree analysis using new technology. Beta Test Version v. 0.1, computer program. http://www.zmuc.dk/public/phylogeny/TNT. Accessed 15 June 2015

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Häkkinen M (2013) Reappraisal of sectional taxonomy in Musa (Musaceae). Taxon 4:809–813

    Article  Google Scholar 

  • Häkkinen M, Sharrock S (2002) Diversity in the genus Musa—focus on Rhodochlamys. In: International Network for the Improvement of Banana and Plantain (ed) INIBAP Annual Report 2001. INIBAP, Montpellier, pp 16–23

    Google Scholar 

  • Hall T (2013) BioEdit. Biological sequence alignment editor for Win95/98/NT/2 K/XP/7. http://www.mbio.ncsu.edu/BioEdit/bioedit.html. Accessed 01 Jan 2016

  • Hoot SB, Culham A, Crane PR (1995) The utility of atpB gene sequences in resolving phylogenetic relationships: comparison with rbcL and 18S ribosomal DNA sequences in the Lardizabalaceae. Ann Mo Bot Gard 82:194–207

    Article  Google Scholar 

  • Hřibová E, Čížková J, Christelová P, Taudien S, De Langhe E, Doležel J (2011) The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny. PLoS One 6:e17863. doi:10.1371/journal.pone.0017863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huelsenbeck J, Ronquist F (2001) MrBayes: bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Humboldt A (1810) Ensayo político sobre el reino de la nueva España. Porrúa, Mexico

    Google Scholar 

  • Jain RK (1963) Studies in Musaceae—1. Musa cardiosperma sp. nov., a fossil banana fruit from the Deccan Intertrappean Series, India. Palaeobotanist 12:45–54

    Google Scholar 

  • Jain RK (1965) Studies in Musaceae–III. Fossil records of Musaceae and the origin of bananas. Proc Indian Acad Sci (Plant Sci) 6:170–179

    Google Scholar 

  • Janssens BS, Vandelook F, De Langhe E, Verstraete B, Smets E, Vandenhouwe I, Swennen R (2016) Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia. New Phytol. doi:10.1111/nph.13856

    PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kress WJ, Specht CD (2006) The evolutionary and biogeographic origin and diversification of the tropical monocot order Zingiberales. Aliso 22:621–632

    Article  Google Scholar 

  • Kress WJ, Prince ML, Hahn JW, Zimmer AE (2001) Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence. Syst Biol 50:926–944

    Article  CAS  PubMed  Google Scholar 

  • Lanyon SM (1985) Detecting internal inconsistencies in distance data. Syst Zool 34:397–403

    Article  Google Scholar 

  • Lavin M, Luckow M (1993) Origins and relationships of tropical North America in the context of the boreotropics hypothesis. Am J Bot 80:1–14

    Article  Google Scholar 

  • Lavin M, Thulin M, Labat J-N, Pennington RT (2000) Africa, the odd man out: molecular biogeography of dalbergioid legumes (Fabaceae) suggests otherwise. Syst Bot 25:449–467

    Article  Google Scholar 

  • Li HL (1952) Floristic relationships between eastern Asia and eastern North America. T Am Philos Soc 42:371–429

    Article  Google Scholar 

  • Li L, Häkkinen M, Hao G, Lu Y, Ge X-J (2010) Molecular phylogeny and systematics of the banana family (Musaceae) inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa. Mol Phyloget Evol 57:1–10. doi:10.1016/j.ympev.2010.06.021

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu A-Z, Kress WJ, De-Zhu L (2010) Phylogenetic analyses of the banana family (Musaceae) based on nuclear ribosomal (ITS) and chloroplast (trnl-F) evidence. Taxon 59:20–28

    Google Scholar 

  • Liu A-Z, Li DZ, Wang H, Kress WJ (2002) Ornithophilous and Chiropterophilous pollination in Musa itinerans (Musaceae), a pioneer species in tropical rain forests of Yunnan, southwestern China. Biotropica 34:254–260

    Article  Google Scholar 

  • Liu A-Z, Kress WJ, De-Zhu L (2009) Phylogenetic analyses of the banana family (Musaceae) based on nuclear ribosomal (ITS) and chloroplast (trnl-F) evidence. Taxon 59:20–28

    Google Scholar 

  • Lo EYY, Stefanovic S, Christensen KI, Dickinson TA (2009) Evidence for genetic association between East Asian and western North American Crataegus L. (Rosaceae) and rapid divergence of the western North American lineages based on multiple DNA sequences. Mol Phyloget Evol 51:157–168

    Article  CAS  Google Scholar 

  • Manchester SR, Kress WJ (1993) Fossil Bananas (Musaceae): Ensete oregonense sp. nov. from the Eocene of western North America and its phytogeographic. Am J Bot 80:1264–1272

    Article  Google Scholar 

  • Manen J-F, Natali A (1995) Comparison of the evolution of Ribulose-1, 5-Biphosphate Carboxylase (rbcL) and atpB-rbcL noncoding spacer sequences in a recent plant group, the tribe Rubiaeae (Rubiaceae). J Mol Evol 41:920–927

    Article  CAS  PubMed  Google Scholar 

  • Manos PS, Donoghue MJ (2001) Progress in northern Hemisphere phytogeography. Int J Plant Sci 162:1–2. doi:10.1086/324421

    Article  Google Scholar 

  • Matuda E (1950) Descripción de Musa mexicana. Madroño 10:166–169

    Google Scholar 

  • Nie Z-L, Wen J, Sun H, Bartholomew B (2005) Monophyly of Kelloggia Torrey ex Benth. (Rubiaceae) and evolution of its intercontinental disjunction between western North America and eastern Asia. Am J Bot 92:642–652

    Article  PubMed  Google Scholar 

  • Nixon KC (1999) The parsimony ratchet a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  • Novák P, Hřibová E, Neumann P, Koblížková A, Doležel J, Macas J (2014) Genome-wide analysis of repeat diversity across the family Musaceae. PLoS One 9:e98918. doi:10.1371/journal.pone.0098918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nwakanma DC, Pillay M, Okoli BE, Tenkouano A (2003) Sectional relationships in the genus Musa L. inferred from the PCR-RFLP of organelle DNA sequences. Theor Appl Genet 107:850–856

    Article  CAS  PubMed  Google Scholar 

  • Planet PJ (2006) Tree disagreement: measuring and testing incongruence in phylogenies. J Biomed Inform 39:86–102

    Article  CAS  PubMed  Google Scholar 

  • Poe S (2003) Evaluation of the strategy of long-branch subdivision to improve the accuracy of phylogenetic methods. Syst Biol 52:423–428

    Article  PubMed  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic Model Average. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Ramírez MJ (2006) Further problems with the incongruence length difference test: ‘’hypercongruence’’ effect and multiple comparisons. Cladistics 22:289–295

    Article  Google Scholar 

  • Ramírez JL, Cevallos-Ferris SRS (2000) Leaves of Berberidaceae (Berberis and Mahonia) from Oligocene sediments, near Tepexi de Rodríguez, Puebla. Rev Palaeobot Palyno 110:247–257

    Article  Google Scholar 

  • Raven PH, Axelrod DI (1974) Angiosperm biogeography and past continental movements. Ann Mo Bot Gard 61:539–673

    Article  Google Scholar 

  • Renner SS, Clausing G, Meyer K (2001) Historical biogeography of Melastomataceae: the roles of Tertiary migration and long distance dispersal. Am J Bot 7:1290–1300

    Article  Google Scholar 

  • Rodríguez de la Rosa AR, Cevallos-Ferriz SRS (1994) Upper Cretaceous Zingiberalean fruits with in situ seeds from southeastern Coahuila, Mexico. Int J Plant Sci 155:786–805

    Article  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Hueselbeck JP (2003) Mr Bayes 3: Bayesian phylogenetic inference under mix models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Roxburgh W (1814) Musa ornata. Hortus Bengal, Mission Press, Serampore, Calcultta

    Google Scholar 

  • Roxburgh W (1824) Musa ornata. In: Carey W (ed) Flora Indica, vol 2. Mission Press, Serampore, pp 488–491    

    Google Scholar 

  • Schönenberger J, Conti E (2003) Molecular phylogeny and floral evolution of Penaeaceae, Oliniaceae, Rhynchocalycaceae, and Alzateaceae (Myrtales). Am J Bot 90:293–309

    Article  PubMed  Google Scholar 

  • Seelanan T, Schnabel A, Wendel FJ (1997) Congruence and consensus in the cotton tubre (Malvaceae). ASPT 22:259–290

    Google Scholar 

  • Simmonds NW (1962) The evolution of bananas. Longmans, London

    Google Scholar 

  • Simmonds NW, Weatherup STC (1990) Numerical taxonomy of the wild bananas (Musa). New Phytol 115:567–571

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Article  Google Scholar 

  • Sorenson DE, Oneal E, García-Moreno J, Mindell PD (2003) More taxa, more characters: the hoatzin problem is still unresoved. Mol Biol Evol 20:1484–1499. doi:10.1093/molbev/msg157

    Article  CAS  PubMed  Google Scholar 

  • Sulistyaningsih DL, Megia R, Widjaja AE (2014) Phylogenetical study of wild banana species (Musa L.) in Sulawesi inferred from internal transcribed spacer region of nuclear ribosomal DNA sequences. Biotropia 21:13–24

    Google Scholar 

  • Swofford DL (2003) PAUP* Phylogenetic analysis using parsimony version 4.0b10. Sinauer Associates, Sunderland. http://paup.sc.fsu.edu. Accessed May 2015  

  • Sykora KV (1990) History of the impact of man on the distribution of plant species. In: Di Castri F, Hansen AJ, Debussche M (eds) Biological invasions in Europe and the Mediterranean basin. Kluwer Academic Publishers. Dordrecht, pp 37–50. doi:10.1007/978-94-009-1876-4  

    Chapter  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Thorne R (2004) Tropical plant disjunctions: a personal reflection. Int J Plant Sci 165(4 suppl):137–138

    Article  Google Scholar 

  • Tiffney BH (1985a) Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J Arnold Arbor 66:73–94

    Article  Google Scholar 

  • Tiffney BH (1985b) The eocene north Atlantic land BRIDGE and its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J Arnold Arbor 66:243–273

    Article  Google Scholar 

  • von der Lippe M, Kowarik I (2007) Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conserv Biol 21:986–996

    Article  PubMed  Google Scholar 

  • Wen J (1998) Evolution of the Eastern Asian and Eastern North American disjunct pattern: insights from phylogenetic studies. Korean J Pl Taxon 28:63–81

    Google Scholar 

  • Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Ann Rev Ecol Syst 30:421–455

    Article  Google Scholar 

  • Wen J (2000) Internal transcribed spacer phylogeny of the Asian and eastern North American disjunct Aralia sect. Dimorphanthus (Araliaceae) and its biogeographic implications. Int J Plant Sci 161:959–966

    Article  Google Scholar 

  • Wen J (2001) Evolution of eastern Asian-North American biogeographic disjunctions: a few additional issues. Int J Plant Sci 162:117–122

    Article  Google Scholar 

  • Wen J, Ickert-Bond SM (2009) Evolution of the Madrean–Tethyan disjunctions and the North and South American amphitropical disjunctions in plants. J Syst Evol 47:331–348

    Article  Google Scholar 

  • Wen J, Ickert-Bond SM, Nie ZL, Li R (2010) Timing and modes of evolution of eastern Asian—North American biogeographic disjunctions in seed plants. In: Long M, Gu H, Zhou Z (eds) Darwin’s heritage today: proceedings of the Darwin 200. Beijing international conference, Higher Education Press, Beijing, China, pp 252–269

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wiens JJ, Tiu J (2012) Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling. PLoS One 7:e42925. doi:10.1371/journal.pone.0042925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson SJ, Otsuki T (2004) To spray or not to spray: pesticides, banana exports, and food safety. Food Policy 29:131–146

    Article  Google Scholar 

  • Wong C, Kiew R, Argent G, Ohn S, Lee S, Gan Y (2002) Assessment of the validity of the sections in Musa (Musaceae) using AFLP. Ann Bot Lond 90:231–238

    Article  CAS  Google Scholar 

  • Wong C, Argent G, Kiew R, Ohn S, Gan Y (2003) The genetic relations of Musa species from Mount Jaya, New Guinea, and a reappraisal of the sections Musa (Musaceae). Gard Bull (Singapore) 55:97–111

    Google Scholar 

  • Xiang QY, Soltis DE (2001) Dispersal–vicariance analyses of intercontinental disjuncts: historical biogeographical implications for angiosperms in the Northern Hemisphere. Int J Plant Sci 162:29–39

    Article  Google Scholar 

  • Yoder AD, Irwin JA, Payseur BA (2001) Failure of the ILD to determine data combinability for slow loris phylogeny. Syst Biol 50:408–424

    Article  CAS  PubMed  Google Scholar 

  • Ze-Long N, Sun H, Beardsley M, Olmstead GR, Wen J (2006) Evolution of biogeographic disjunction between eastern Asia and eastern North America in Phryma (Phrymaceae). Am J Bot 93:1343–1356

    Article  Google Scholar 

  • Zhou S, Renner SS, Wen J (2006) Molecular phylogeny and intra-and intercontinental biogeography of Calycanthaceae. Mol Phylogenet Evol 39:1–15. doi:10.1016/j.ympev.2006.01.015

    Article  PubMed  CAS  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation, University of Texas

Download references

Acknowledgements

We thank the University of Oxford Botanical Garden, the Botanic Garden of Helsinki, Singapore Botanic Gardens, Fairchild Tropical Botanic Garden, and Missouri Botanical Garden for providing leaf tissue samples from Asian specimens of M. ornata. We also thank Javier Barrientos Villalobos for the support in editing the images. This study was funded by Consejo Nacional de Ciencia y Tecnología (Grant CONACyT-103158 to DG) and Instituto de Ecología A.C. (Grant INECOL, 20030-10134 to GCC). María Elena Sánchez Salazar and Salvador Sánchez Colón contributed to the edition of the manuscript. Finally, we thank Daniel Sánchez, Jorge Campos and two anonymous reviewers who contributed valuable comments to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireya Burgos-Hernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgos-Hernández, M., González, D. & Castillo-Campos, G. Phylogenetic position of the disjunct species Musa ornata (Musaceae): first approach to understand its distribution. Genet Resour Crop Evol 64, 1889–1904 (2017). https://doi.org/10.1007/s10722-016-0479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-016-0479-8

Keywords

Navigation