Advertisement

Genetic Resources and Crop Evolution

, Volume 64, Issue 7, pp 1661–1674 | Cite as

Morphological, isoenzymatic and ISSRs-based description of diversity of eight sand oat (Avena strigosa Schreb.) landraces

  • Wiesław Podyma
  • Maja BoczkowskaEmail author
  • Bogdan Wolko
  • Denise F. Dostatny
Research Article

Abstract

The paper presents a diversity study of eight Avena strigosa landraces originating from different parts of the world. The analysis was based on morphological description, isoenzymes and inter simple sequence repeats. Uniquely, the variability within each tested accession at the DNA level was identified. The isoenzymes analysis was not sufficiently sensitive to detect differences among accessions. Extended analysis using morphology and molecular markers allowed distinction among landraces. The accession PL51584 from France showed significant genetic distinctiveness from all other accessions. We applied the generalized procrustes analysis to compare the results of the surveys. It allowed identifying two groups of accessions. The first one consisting of three landraces originated from Southwestern Europe, while the second one was formed by three accessions originated from central and east Europe together with Argentinian one. The Southwestern Europe landrace retained their distinctness. The accessions that originated from South America were slightly more internally diverse than the European accessions. It may be a reflection of the different usage i.e. for forage, pasture or as a cover crop instead of grain. During the last century sand oat was controlled as a weed in Europe, while in South America its potential as a forage crop in marginal environments was appreciated and new cultivars were developed. A new attitude arises presently towards to A. strigosa in Europe.

Keywords

Avena strigosa Diversity Isoenzymes ISSR Landraces Morphology Sand oat 

Notes

Acknowledgements

The authors would like to express their utmost gratitude to Zofia Bulińska-Radomska, the former head of National Centre for Plant Genetic Resources, IHAR-PIB, who makes the analysis presented in this paper possible. We also extend heartfelt thanks to Bogusław Łapiński, Elżbieta Tarczyk and the other NCPGR team members for their invaluable help during the experiments and constructive remarks. This work was supported by the Ministry of Agriculture and Rural Development of Poland in the form of the Multi-annual Program (2008–2013) and statutory founds of the Plant Breeding and Acclimatization Institute (IHAR), National Research Institute.

Compliance with ethical standards

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Supplementary material

10722_2016_464_MOESM1_ESM.eps (1.4 mb)
Supplementary material 1 (EPS 1426 kb)
10722_2016_464_MOESM2_ESM.eps (621 kb)
Supplementary material 2 (EPS 621 kb)
10722_2016_464_MOESM3_ESM.eps (662 kb)
Supplementary material 3 (EPS 663 kb)
10722_2016_464_MOESM4_ESM.eps (663 kb)
Supplementary material 4 (EPS 664 kb)

References

  1. Antony T (2007) Evaluation of black oat (Avena strigosa Schreb.) germplasm. Dissertation, Auburn UniversityGoogle Scholar
  2. Baum BR (1977) Oats: wild and cultivated, a monograph of the genus Avena L. (Poaceae).  Biosystematics Resarch Institute Monograph 14, pp1-463. Canada Department of Agriculture, Ministry of Supply and Services, Ottawa, Canada.Google Scholar
  3. Boczkowska M, Onyśk A (2016) Unused genetic resources: a case study of Polish common oat germplasm. Ann Appl Biol. doi: 10.1111/aab.12289 Google Scholar
  4. Boczkowska M, Tarczyk E (2013) Genetic diversity among Polish landraces of common oat (Avena sativa L.). Genet Resour Crop Ev 60:2157–2169CrossRefGoogle Scholar
  5. Boczkowska M, Nowosielski J, Nowosielska D, Podyma W (2014) Assessing genetic diversity in 23 early Polish oat cultivars based on molecular and morphological studies. Genet Resour Crop Evol 61:927–941CrossRefGoogle Scholar
  6. Boczkowska M, Podyma W, Łapiński B (2016) Oat. In: Singh M, Upadhyaya H (eds) Genetic and genomic resources for grain cereals improvement. Academic Press, Elsevier, pp 159–225Google Scholar
  7. Bramardi SJ, Bernet GP, Asíns MJ, Carbonell EA (2005) Simultaneous Agronomic and molecular characterization of genotypes via the generalised procrustes analysis. Crop Sci 45:1603–1609CrossRefGoogle Scholar
  8. Cardy BJ, Stuber CW, Goodman,MM (1981) Techniques for starch gel electrophoresis of enzyme from maize (Zea mays L.). Inst Stat Mimeogr Ser No. 1317, North Carolina State University, Raleigh.Google Scholar
  9. Chater A (1993) Avena strigosa, bristle oat, and other cereals as crops and casuals in Cardiganshire, VC 46. BSBI Welsh Bull 55:7–14Google Scholar
  10. Da-Silva P, Milach S, Tisian L (2011) Transferability and utility of white oat (Avena sativa) microsatellite markers for genetic studies in black oat (Avena strigosa). Genet Mol Res 10:2916–2923CrossRefPubMedGoogle Scholar
  11. Dial H (2014) Plant guide for black oat (Avena strigosa Schreb.). USDA-Natural Resources Conservation Service. Tucson Plant Materials Center, TucsonGoogle Scholar
  12. Dice L (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRefGoogle Scholar
  13. Diederichsen A (2014) Characterization of bristle oat (Avena strigosa Schreb. s.l.), a Nordic-CanadianGerman Cooperation. NordGen Plants, Alnarp, Sweden. http://www.nordgen.org/index.php/en/content/view/full/1686. Accessed 23 Jan 2016
  14. Dillenburg CR (1984) Identificação das espécies do gênero Avena (Gramineae) coletadas no estado do Rio Grande do Sul (Brasil). Anu Téc Inst Pesqui Zootéc Franc Osório 11:65–102Google Scholar
  15. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  17. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes—application to human mitochondrial-DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  18. Frey KJ (1991) Distribution of Avena strigosa (Poaceae) in Europe. Fragm Florist Geobot 36:281–288Google Scholar
  19. Gottlieb L (1973) Enzyme differentiation and phylogeny in Clarkia franciscana, C. rubicunda and C. amoena. Evolution 27:205–214Google Scholar
  20. Gower JC (1975) Generalized procrustes analysis. Psychometrika 40:33–51. doi: 10.1007/bf02291478 CrossRefGoogle Scholar
  21. Harlan JR, De Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  22. Holden J (1976) Oats: Avena spp. (Gramineae–Aveneae). In: Simmonds NW (ed) Evolution of crop plants, Longman, London, UK, pp 86–90Google Scholar
  23. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kornaś J (1972) Rozmieszczenie i ekologia rozsiewania sie chwastow w zespolach polnych w Gorcach. Acta Agrobot 25:5–67CrossRefGoogle Scholar
  25. Korniak T (1997) Avena strigosa (Poaceae) in north-eastern Poland. Fragm Florist Geobot 42(2):201–206Google Scholar
  26. Kropač Z (1981) Avena strigosa—a disappearing synanthropic species in Czechoslovakia. Preslia 53:305–321Google Scholar
  27. Kubiak K (2009) Genetic diversity of Avena strigosa Schreb. ecotypes on the basis of isoenzyme markers. Biodiv Res Conserv 15:23–28. doi: 10.2478/v10119-009-0013-3 Google Scholar
  28. Legget JM (1992) Classification and speciation in Avena. In: Marshall HG, Sorrells ME (eds) Oat science and technology. Agronomy monograph. ASA and CSSA, Madison, pp 29–53Google Scholar
  29. Loskutov I (2007) Oat (Avena L.). Distribution, taxonomy, evolution and breeding value. VIR, Sankt-PetersburgGoogle Scholar
  30. Mantel N (1967) The detection of disease clustering and a generalised regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  31. Milatz R (1936) Der Hafer im Sortenregister: Merkmal-und Sortenkunde. Parey, BerlinGoogle Scholar
  32. Mordvinkina A (1936) Oves—Avena. Kulturnaya flora SSSR Khlebnye zlaki Rozh, Yachmen, Oves (Cultiv Flora USSR Grain Cereals Rye Barley Oats) 2:333–438Google Scholar
  33. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. doi: 10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Podyma W (1994) Wystepowanie gatunku Avena strigosa Schreb. sensu lato oraz zmienosc cech morfologieznych I biochemicznych w populacjach tego gatunku (Distribution of Avena strigosa Schreb. sensu lato and morphological and biochemical differentiation within the genus). Dissertation, Radzikow, Blonie, PolandGoogle Scholar
  35. Podyma W, Tyburski J, Kuszewska K (2013) Charakterystyka oraz możliwości wykorzystania współcześnie niedocenianych zbóż (General characteristics, useful traits and possible use of neglected cereals). In: Tyburski J, Kostrzewska M (eds) Biologiczna różnorodność ekosystemów rolnych oraz możliwość jej ochrony w gospodarstwach ekologicznych (Biodiversity of agroecosystems and possibility of its protection in organic farming). Uniwersytet Warmińsko-Mazurski, Olsztyn, pp 17–41Google Scholar
  36. Rocha AML (1980) Avena L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea 3. Cambridge University Press, Cambridge, pp 206–208Google Scholar
  37. Rodionova N, Soldatov V, Merezhko V, Jarosh N, Kobyljanskij V (1994) Flora of cultivated plants, vol 2. Kolos, MoscowGoogle Scholar
  38. Roldan-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134. doi: 10.1023/A:1009680614564 CrossRefGoogle Scholar
  39. Scholten M, Spoor B, Green N (2009) Machair corn: management and conservation of a historical machair component. Glasg Nat 25:63–71Google Scholar
  40. Selander RK, Smith MH, Yang SY, Johnson WE, Gentry JB (1971) Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus). Stud Genet 6:49–90Google Scholar
  41. Słaboński A (1949) Odmiany owsa, vol 29. Biblioteka, PuławskaGoogle Scholar
  42. Stanton TR (1961) Classification of Avena. In: Coffman FA (ed) Oats and oat improvement. American Society of Agronomy Publisher, MadisonGoogle Scholar
  43. Suttie M, Reynolds S (2004) Fodder oats: a world overview. Plant production and protection series, vol 33. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  44. USDA (1957) Plant material introduced January 1 to December 31, 1951 (NOS. 193291 TO 198914). Plant Inventory 159:1–221Google Scholar
  45. USDA (1967) Plant Material Introduced January 1 to December 31, 1961 (NOS 270535 TO 277783). Plant Inventory 169:1–316Google Scholar
  46. Vavilov NI (1926) Studies on the origin of cultivated plants. Bull Appl Bot Gen Plant Breed 16:1–248Google Scholar
  47. Vavilov NI (1957) World resources of varieties of small grains, grain legumes and flax, and their use in breeding. Leningrad Izd-vo AN SSSR, Moscow (in Russian)Google Scholar
  48. VIR - Accession List - Plant genetic resources database (2016). http://91.151.189.38/virdb/. Accessed 27 May 2016
  49. Weeden N (1984) Distinguishing among white seeded bean cultivars by means of allozyme genotypes. Euphytica 33:199–208CrossRefGoogle Scholar
  50. Weibull J, Johansen Bojensen L, Rasomavicius V (2001) Avena strigosa Schreb. in Denmark and Lithuania. Plant Genet Resour Newsl 131:1–4Google Scholar
  51. Wiethold J, Meyer J (2003) Getreidevorräte und Verarbeitungsabfälle aus einer Brandruine des 13. Jahrhunderts auf dem Grundstück Kuhstraße. Bodendenkmalpfl Mecklenburg Vorpommern Jahrb 23:77–118Google Scholar
  52. Zając A (1979) Pochodzenie archeofitów wystepujacych w Polsce. Uniwersytet Jagielloński, KrakówGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Wiesław Podyma
    • 1
  • Maja Boczkowska
    • 1
    Email author
  • Bogdan Wolko
    • 2
  • Denise F. Dostatny
    • 1
  1. 1.Plant Breeding and Acclimatization Institute (IHAR)National Research InstituteBłoniePoland
  2. 2.Institute of Plant GeneticsPolish Academy of SciencesPoznańPoland

Personalised recommendations