Diversity in cowpea (Vigna unguiculata (L.) Walp.) local populations from Greece

Abstract

Cowpea cultivation in many countries around the Mediterranean Basin depends on a number of locally adapted populations conserved on-farm at a small scale, rather than on the use of modern varieties. Documentation, characterization and exploitation of traditional local populations could contribute to their conservation and utilization as sources of desirable characteristics. Therefore, a study was conducted to (a) characterize, (b) assess diversity and (c) classify 23 on-farm conserved local cowpea populations based on 32 agro-morphological traits. Investigations on diversity of characteristics related to seed yield, mineral and seed crude protein content as well as on correlations among them were carried out. A relatively high phenotypic diversity was observed. In particular, a high level of within population diversity was found (\( \bar{H}s \) = 0.34) exceeding that among populations’ diversity (Gst = 0.27). Principal component analysis classified the majority of local populations into two groups (mainly according to populations’ seed coat color and eye color), further divided into six subgroups regardless of the populations’ geographical origin. Significant differences were also observed among the populations studied for potassium and calcium, as well as for their seed crude protein content which ranged from 22.14 to 28.37 %. The results show appreciable levels of intra- and inter-phenotypic diversity in on-farm conserved cowpea populations, which indicates the existence of a valuable gene pool for future exploitation in breeding programs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Afiukwa CA, Ubi BE, Kunert KJ, Emmanuel TF, Akusu JO (2013) Seed protein content variation in cowpea genotypes. WJAS 1:94–99. http://wsrjournals.org/journal/wjas

  2. Ajayi AT, Adekola MO, Taiwo BH, Azuh VO (2014) Character expression and differences in yield potential of ten genotypes of Cowpea (Vigna unguiculata (L.) Walp.). Int J Plant Res 4:63–71. doi:10.5923/j.plant.20140403.01

    Google Scholar 

  3. Animasaun DA, Oyedeji S, Azeez YK, Mustapha OT, Azeez MA (2015) Genetic variability study among ten cultivars of Cowpea (Vigna unguiculata (L.) Walp.) using morpho-agronomic traits and nutritional composition. J Agr Sci 10:119–130. doi:10.4038/jas.v10i2.8057

    Google Scholar 

  4. Aremu CO, Adebayo MA, Ariyo OJ, Adewale BB (2007) Classification of genetic diversity and choice of parents for hybridization in Cowpea (Vigna unguiculata (L.) Walp.) for humid savanna ecology. Afr J Biotechnol 6:2333–2339. http://www.academicjournals.org/AJB

  5. Asante IK, Adu-Dapaah H, Addison P (2004) Seed weight and protein and tannin contents of 32 cowpea accessions in Ghana. Trop Sci 44:77–79. doi:10.1002/ts.139

    Article  Google Scholar 

  6. Asare AT, Gowda BS, Galynon KA, Aboagye LL, Takrama JF, Timko MP (2010) Assessment of the genetic diversity in Cowpea (Vigna unguiculata (L.) Walp.) germplasm from Ghana using simple sequence repeat markers. Plant Genet Res 8:142–150. doi:10.1017/S1479262110000092

    CAS  Article  Google Scholar 

  7. Basaran U, Ayan I, Acar Z, Mut H, Asci OO (2011) Seed yield and agronomic parameters of cowpea (Vigna unguiculata (L.) Walp.) genotypes grown in the Black Sea region of Turkey. Afr J Biotechnol 10:13461–13464. doi:10.5897/AJB11.2489

    Google Scholar 

  8. Belane AK, Dakora FD (2011) Levels of nutritionally-important trace elements and macronutrients in edible leaves and grain of 27 nodulated cowpea (Vigna unguiculata (L.) Walp.) genotypes grown in the Upper West Region of Ghana. Food Chem 125:99–105. doi:10.1016/j.foodchem.2010.08.044

    CAS  Article  Google Scholar 

  9. Belko N, Cisse N, Diop NN, Zombre G, Thiaw S, Muranaka S, Ehlers JD (2014) Selection for post-flowering drought resistance in short and medium duration Cowpeas using stress tolerance indices. Crop Sci 54:25–33. doi:10.2135/CropSci2012.12.0685

    Article  Google Scholar 

  10. Bellucci E, Rau D, Nanni L, Ferradini N, Giardini A, Rodriguez M, Attene G, Papa R (2013) Population structure of Barley landrace populations and gene-flow with modern varieties. PLoS ONE 8:e83891. doi:10.1371/journal.pone.0083891

    Article  PubMed  PubMed Central  Google Scholar 

  11. Berendsen R, Pieterse C, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:10.1016/j.tplants.2012.04.001

    CAS  Article  PubMed  Google Scholar 

  12. Biesiada A, Tomzak A (2012) Biotic and abiotic factors affecting the content of the chosen antioxidant compounds in vegetables. Veg Crops Res Bull 76:55–78. doi:10.2478/v10032-012-0004-3

    CAS  Google Scholar 

  13. Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardinni A, Zeuli PS, Logozzo G, Stougaard J, McClean P, Attene G, Papa R (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. PNAS 109:788–796. doi:10.1073/pnas.1108973109

    Article  Google Scholar 

  14. Boukar O, Massawe F, Muranaka S, Franco J, Maziya-Dixon B, Singh B, Fatokun C (2011) Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Plant Genet Res 9:515–522. doi:10.1017/S1479262111000815

    CAS  Article  Google Scholar 

  15. Boukar O, Fatokun CA, Roberts PA, Abberton M, Huynh BL, Close TJ, Kyei-Boahen S, Higgins TJV, Ehlers JD (2015) Cowpea. In: De Ron Antonio M (ed) Grain legumes. Springer, New York, pp 219–250

    Google Scholar 

  16. Brown AHD, Marshall DR (1995) A basic sampling strategy: theory and practice. In: Guarino L, Rao VR, Reid R (eds) Collecting plant genetic diversity technical guidelines. CAB International, Oxon, pp 75–91

    Google Scholar 

  17. Camacho Villa TC, Maxted N, Scholtena M, Ford-Lloyda B (2005) Defining and identifying crop landraces. Plant Genet Res 3:373–384. doi:10.1079/PGR200591

    Article  Google Scholar 

  18. Carvalho AFU, de Sousa NM, Farias DF, da Rocha-Bezerra LCB, da Silva RMP, Viana MP, Gouveia ST, Sampaio SS, de Sousa MB, de Lima GPG, de Morais SM, Barros CC, Fihlo FRF (2012) Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. J Food Compos Anal 26:81–88. doi:10.1016/j.jfca.2012.01.005

    CAS  Article  Google Scholar 

  19. Cobbinah FA, Addo-Quaye AA, Asante IK (2011) Characterization, evaluation and selection of cowpea (Vigna unguiculata (L.) Walp.) accessions with desirable traits from eight regions of Ghana. APRN J Agri Biol Sci 6:21–32. http://www.arpnjournals.com/jabs/research_papers/rp_2011/jabs_0711_290.pdf

  20. Commission Directive 2008/62/EC of 20 June 2008 providing for certain derogations for acceptance of agricultural landraces and varieties which are naturally adapted to the local and regional conditions and threatened by genetic erosion and for marketing of seed and seed potatoes of those landraces and varieties. OJ L 162, 21.6.2008, pp 13–19

  21. Commission Directive 2009/145/EC of 26 November 2009 providing for certain derogations, for acceptance of vegetable landraces and varieties which have been traditionally grown in particular localities and regions and are threatened by genetic erosion and of vegetable varieties with no intrinsic value for commercial crop production but developed for growing under particular conditions and for marketing of seed of those landraces and varieties. OJ L 312, 27.11.2009, pp 44–54

  22. Coulibaly S, Pasquet RS, Papa R, Gepts P (2002) AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata (L.) Walp. Reveals extensive gene flow between wild and domesticated types. Theor Appl Genet 104:358–366. doi:10.1007/s001220100740

    CAS  Article  PubMed  Google Scholar 

  23. Cronk QCB (1997) Islands: stability, diversity, conservation. Biodivers Conserv 6:477–493. doi:10.1023/A:1018372910025

    Article  Google Scholar 

  24. Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161. doi:10.1038/43657

    CAS  Article  PubMed  Google Scholar 

  25. Ddamulira G, Santos CAF, Obuo P, Alanyo M, Lwanga CK (2015) Grain yield and protein content of Brazilian cowpea genotypes under diverse ugadan environments. Am J Plant Sci 6:2074–2084. doi:10.4236/ajps.2015.613208

    CAS  Article  Google Scholar 

  26. Douma C, Koutis K, Thanopoulos R, Tsigou R, Galanidis A, Bebeli PJ (2016) Diversity of agricultural plants on Lesvos island (Northeast Aegean, Greece) with emphasis on fruit trees. Sci Hort 210:65–84. doi:10.1016/j.scienta.2016.07.009

    Article  Google Scholar 

  27. Drabo I, Ladeinde TAO, Smithson JB, Redden R (1988) Inheritance of eye pattern and seed coat colour in Cowpea (Vigna unguiculata (L.) Walp.). Plant Breeding 100:119–123. doi:10.1111/j.1439-0523.1988.tb00226.x

    Article  Google Scholar 

  28. Egbadzor KF, Amoako-Atah I, Danquahl EY, Offei SK, Ofori K, Opoku-Agyeman MO (2012) Relationship between flower, immature pod pigmentation and seed testa of cowpea. Int J Biodivers Conserv 4:411–415. doi:10.5897/IJBC11.155

    Google Scholar 

  29. Egbadzor KF, Danquah EY, Ofori K, Yeboah M, Offei SK (2014) Diversity in 118 Cowpea (Vigna unguiculata (L.) Walp.) accessions assessed with 16 morphological traits. Int J Plant Breed Genet 8:13–24. doi:10.3923/ijpbg.2014.13.24

    Article  Google Scholar 

  30. Ehlers JD, Fery RL, Hall AE (2002) Cowpea breeding in the USA: new varieties and improved germplasm. In: Fatokun, SA Tarawali, BB Singh, PM Kormawa, and M Tamò (eds), Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Conference III, IITA, Ibadan, Nigeria. 4–8 Sept 2000. IITA, Ibadan, Nigeria, pp 62–77

  31. Food and Agriculture Organization of the United Nations, FAOSTAT database (FAOSTAT, 2015). http://faostat3.fao.org/browse/Q/QC/E

  32. Foschiani A, Miceli F, Vischi M (2009) Assessing diversity in common bean (Phaseolus vulgaris L.) accessions at phenotype and molecular level: a preliminary approach. Genet Resour Crop Evol 56:445–453. doi:10.1007//s10722-008-9377-z

    Article  Google Scholar 

  33. Fujimoto R, Sasaki T, Ishikawa R, Osabe K, Kawanabe T, Dennis ES (2012) Molecular mechanisms of epigenetic variation in plants. Int J Mol Sci 13:9900–9922. doi:10.3390/ijms13089900

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Fulton J, De Boer L, Boker M (2007) Determination of the demand and market opportunities for cowpea grain and processed products in West Africa. Bean/Cowpea CRSP Final Report 2002-2007:2

  35. Gbaguidi A, Assogba P, Dansi M, Yedomonhan H, Dansi A (2015) Caractérisation agromorphologique des variétiés de niébé cultivées au Bénin. Int J Biol Chem Sci 9:1050–1066. http://ajol.info/index.php/ijbcs

  36. Gepts P (2002) ‘A comparison between crop domestication, classical plant breeding and genetic engineering’. Crop Sci 42:1780–1790. doi:10.2135/cropsci2002.1780

    Article  Google Scholar 

  37. Ghalmi N, Malice M, Jacquemin JM, Ourane SM, Mekliche L, Baudoin JP (2010) Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces. Genet Resour Crop Evol 57:371–386. doi:10.2135/cropsci2002.1780

    CAS  Article  Google Scholar 

  38. Goenaga R, Gillaspie AG Jr, Quiles A (2010) Field screening of Cowpea genotypes for alkaline soil tolerance. HortScience 45:1639–1642

    Google Scholar 

  39. Hamid S, Muzaffar S, Wani IA, Masoodi FA, Bhat MM (2016) Physical and cooking characteristics of two cowpea cultivars grown in temperate Indian climate. J Saudi Soc Agric Sci 15:127–134. doi:10.1016/j.jssas.2014.08.002

    Google Scholar 

  40. Hansen NC, Jolley VD, Naeve SL, Goos RJ (2004) Iron deficiency of soybean in the North Central U.S. and associated soil properties. J Soil Sci Plant Nutr 50:983–987. doi:10.1080/00380768.2004.10408564

    CAS  Article  Google Scholar 

  41. IBM Corp. Released (2011) IBM SPSS statistics for windows, version 20.0. IBM Corp, Armonk

  42. IBPGR (1983) Descriptors for Cowpea. IBPGR Secretariat, Rome

    Google Scholar 

  43. Ishiyaku MF, Singh BB (2004) Inheritance of purple pigmentation on vegetative parts in cowpea (Vigna unguiculata (L.) Walp.). Sci Hortic (Amsterdam) 102:369–373. doi:10.1016/j.scienta.2004.04.001

    Article  Google Scholar 

  44. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillmann C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5(6):e1000530. doi:10.1371/journal.pgen.1000530

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kavvadas SD (2015) Illustrated botanical, plant dictionary. Pelekanos, Athens, pp 847–850 (in Greek)

    Google Scholar 

  46. Keding G, Weinberger K, Swai I, Mndiga H (2007) Important traits in traditional vegetables. In: Diversity, traits and use of traditional vegetables in Tanzania. Technical Bulletin No. 40. AVRDC-The World Vegetable Center, Shanhua, Taiwan, pp 14–18

  47. Kuehl RO (2000) Design of experiments: statistical principles of research design and analysis. Duxbury, Thomson Learning, Pacific Grove, CA, USA

  48. Kumar S, Ali M (2006) GE interaction and its breeding implications in pulses. Botanica 56:31–36

    Google Scholar 

  49. Laghetti G, Pignone D, Hammer K, Psarra E, Samaras S (2008) Collecting crop genetic resources in the Mediterranean agricultural islands: Lefkada, Ithaca and Kefalonia (Greece). Plant Genet Resour News l155:62–68. http://www.bioversityinternational.org/pgrnewsletter/article.asp?lang=en&id_article=3&id_issue=139

  50. Lambot C (2002) Industrial potential of cowpea. In: Fatokun, SA Tarawali, BB Singh, PM Kormawa, and M Tamò (eds), Challenges and opportunities for enhancing sustainable cowpea production. Proceedings of the World Cowpea Conference III, IITA, Ibadan, Nigeria. 4–8 Sept 2000. IITA, Ibadan, Nigeria, pp 367–375

  51. Li CD, Fatokun CA, Ubi B, Singh BB, Scoles GJ (2001) Determining genetic similarities and relationships among Cowpea breeding lines and cultivars by microsatellite markers. Crop Sci 41:189–197. doi:10.2135/cropsci2001.411189x

    CAS  Article  Google Scholar 

  52. Lim TK (2012) Edible medicinal and non-medicinal plants. Springer, Berlin, pp 371–380

    Book  Google Scholar 

  53. Madodé YE, Houssou PA, Linnemann AR, Hounhouigan DJ, Nout MJR, Van Boekel MAJS (2011) Preparation, consumption, and nutritional composition of West African Cowpea dishes. Ecol Food Nutr 50:115–136. doi:10.1080/03670244.2011.552371

    Article  PubMed  Google Scholar 

  54. Manggoel W, Uguru MI, Ndam ON, Dsbak MA (2012) Genetic variability, correlation and path coefficient analysis of some yield components of ten cowpea (Vigna unguiculata (L.) Walp.) accessions. J Plant Breed Crop Sci 4:80–86. doi:10.5897/JPBCS12.007

    Article  Google Scholar 

  55. Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952. doi:10.1038/ng1841

    CAS  Article  PubMed  Google Scholar 

  56. Mashi DS (2006) Genetic studies on seed coat texture and cooking time in some varieties of cowpea (Vigna unguiculata (L.) Walp.). Dissertation, University of JOS

  57. Mikić A, Milošević M, Mihailović V, Nualsri C, Milošević D, Vasić M, and Delić D (2010) Cowpea and other Vigna species in Serbia. In: IITA R4D Review 5:17–19. doi:10.17660/ActaHortic.2009.830.103

  58. Miura K, Agetsuma M, Kitano H, Yoshimura A, Matsuoka M, Jacobsen SE, Ashikari M (2009) A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci USA 106:11218–11223. doi:10.1073/pnas.0901942106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Ndema NE, Etame J, Taffouo VD, Bilong P (2010) Effects of some physical and chemical characteristics of soil on productivity and yield of cowpea (Vigna unguiculata (L.) Walp.) in coastal region (Cameroon). Afr J Environ Sci Technol 4:108–114. doi:http://www.academicjournals.org/AJEST

  60. Negri V (2005) Agro-biodiversity conservation in Europe: ethical issues. J Agric Environ Ethics 18:3–25. doi:10.1007//s10806-004-3084-3

    Article  Google Scholar 

  61. Negri V, Tosti N, Falcinelly M, Veronesi F (2000) Characterization of thirteen cowpea landraces from Umbria (Italy). Strategy for their conservation and promotion. Genet Resour Crop Evol 47:141–146. doi:10.1023/A:1008714108583

    Article  Google Scholar 

  62. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M, Kovacs G, Larson H, Pinheiro de Carvalho MAA, Rubiales D, Russell J, dos Santos TMM, Vaz Patto MC (2010) Cereal landraces for sustainable agriculture. A review. Agron Sustain Dev 30:237–269. doi:10.1051/agro/2009032

    Article  Google Scholar 

  64. Nwofia GE, Nwanebu M, Agbo CU (2012) Variability and inter- relationships between yield and associated traits in Cowpea (Vigna unguiculata (L.) Walp.) as influenced by plant populations. WJAS 8:396–402. doi:10.5829/idosi.wjas.2012.8.4.1669

    Google Scholar 

  65. Nwosu DJ, Olatunbosun BD, Adetiloye IS (2013) Genetic variability, heritability and genetic advance in cowpea genotypes in two agro-ecological environments. Greener J Biol Sci 3:202–207. doi:10.15580/GJBS.2013.5.061313672

    Article  Google Scholar 

  66. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155. doi:10.1111/j.1365-294X.2004.02141.x

    CAS  Article  PubMed  Google Scholar 

  67. Nybom H, Weising K, Rotter B (2014) DNA fingerprinting in botany: past, present, future. Investig Genet 5:1. doi:10.1186/2041-2223-5-1

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nzaramba MN, Hale AL, Scheuring DC, Miller JC Jr (2005) Inheritance of antioxidant activity and its association with seed coat color in cowpea. J Am Soc Hort Sci 130:386–391

    CAS  Google Scholar 

  69. Olukolu BA, Maye S, Stadler F, Ng N, Fawole I, Dominique D, Azam-Ali SN, Abbot AG, Kole C (2012) Genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc.) as revealed by phenotypic descriptors and DArT marker analysis. Genet Resour Crop Evol 59:347–358. doi:10.1007/s10722-011-9686-5

    Article  Google Scholar 

  70. Omoigui LO, Ishiyaku MF, Kamara AY, Alabi SO, Mohammed SG (2006) Genetic variability and heritability studies of some reproductive traits in cowpea (Vigna unguiculata (L.) Walp.) Afr J Biotechnol 5:1191–1195. http://www.academicjournals.org/AJB

  71. Othman SA, Singh BB, Mukhtar FB (2006) Studies on the inheritance pattern of joints, pod and flower pigmentation in cowpea (Vigna unguiculata (L.) Walp.). Afr J Biotechnol 5:2371–2376

    Google Scholar 

  72. Padi FK (2003) Genetic analysis of pigmentation in Cowpea. Pak J Biol Sci 6:1655–1659. doi:10.3923/pjbs.2003.1655.1659

    Article  Google Scholar 

  73. Pandey YR, Pun AB, Mishra RC (2006) Evaluation of vegetable type Cowpea varieties for commercial production in the River Basin and Low Hill Areas. Nepal Agric Res J 7:16–20. doi:10.3126/narj.v7i0.1861

    Google Scholar 

  74. Peksen A (2004) Fresh pod yield and some pod characteristics of cowpea (Vigna unguiculata (L.) Walp.) genotypes from Turkey. Asian J Plant Sci 3:269–273. doi:10.3923/ajps.2004.269.273

    Article  Google Scholar 

  75. Perrino P, Laghetti G, Spagnoleti Zeuli PL, Monti LM (1993) Diversification of cowpea in the Mediterranean and other centers of cultivation. Genet Resour Crop Evol 40:121–132. doi:10.1007/BF00051116

    Article  Google Scholar 

  76. Piergiovanni RA, Lioi L (2010) Italian Common bean landraces: history, genetic diversity and seed quality. Diversity 2:837–862. doi:10.3390/d2060837

    CAS  Article  Google Scholar 

  77. Pikaard CS, Scheid OM (2014) Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 2014(6):a019315. doi:10.1101/cshperspect.a019315

    Article  Google Scholar 

  78. Polegri L, Negri V (2010) Molecular markers for promoting agro-biodiversity conservation: a case study from Italy. How cowpea landraces were saved from extinction. Genet Resour Crop Evol 57:867–880. doi:10.1007/s10722-009-9526-z

    CAS  Article  Google Scholar 

  79. Ribeiro ND, Jost E, Maziero SM, Storck L, Rosa DP (2013) Selection of common bean lines with high grain yield and high grain calcium and iron concentrations. Rev Ceres Viçosa 61:77–83. doi:10.1590/S0034-737X2014000100010

    Article  Google Scholar 

  80. Ribeiro HL, Boiteux LS, Santos CAF (2014) Genetic parameters of earliness and plant architecture traits suitable for mechanical harvesting of cowpea (Vigna unguiculata (L.) Walp.). Aust J Crop Sci 8:1232–1238

    Google Scholar 

  81. Richards EJ (2011) Natural epigenetic variation in plant species: a view from the field. Curr Opin Plant Biol 14:204–209. doi:10.1016/j.pbi.2011.03.009

    CAS  Article  PubMed  Google Scholar 

  82. Rohlf FJ (1998) NTSYS-pc Numerical Taxonomy and Multivariate Analysis System. Exeter Publications, Setauket

    Google Scholar 

  83. Santos CAF, Costa DCC, da Silva WR, Boiteux LS (2012) Genetic analysis of total seed protein content in two Cowpea crosses. Crop Sci 52:2501–2506. doi:10.2135/cropsci2011.12.0632

    CAS  Article  Google Scholar 

  84. SAS Institute Inc (2008) JMP/Sales Department. SAS Institute Inc, Cary

    Google Scholar 

  85. Scarano D, Rubio F, José Ruiz J, Raoa R, Corradoa G (2014) Morphological and genetic diversity among and within common bean (Phaseolus vulgaris L.) landraces from the Campania region (Southern Italy). Sci Hortic (Amsterdam) 180:72–78. doi:10.1016/j.scienta.2014.10.013

    Article  Google Scholar 

  86. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131. doi:10.1016/j.sjbs.2014.12.001

    CAS  Article  PubMed  Google Scholar 

  87. Smykal P, Coyne JC, Ambrose JM, Maxted N, Schaefer H, Blair MW, Berger J, Greene SL, Nelson MN, Besharat N, Vymyslickýj T, Tokerk C, Saxena RK, Roorkiwal M, Pandey MK, Hub J, Lim YH, Wang LX, Guom Y, Qium LJ, Reddenn RJ, Varshneyi RK (2015) Legume crops phylogeny and genetic diversity for science and breeding. CRC Cr Rev Plant Sci 34:43–104. doi:10.1080/07352689.2014.897904

    Article  Google Scholar 

  88. Som MG, Hazra P (1993) Cowpea. In: Kalloo G, Bergh BO (eds) Genetic improvement of vegetable crops. Pergamon Press, Oxford, pp 339–354

    Google Scholar 

  89. StatSoft (2007)Statistica package release 8. StatSoft, Inc. 1984-2007, Tulsa, USA

  90. Stoilova T, Pereira G (2013) Assessment of the genetic diversity in a germplasm collection of cowpea (Vigna unguiculata (L.) Walp.) using morphological traits. Afr J Biotechnol 8:208–215. doi:10.1017/S1479262110000092

    Google Scholar 

  91. Terzopoulos PJ, Bebeli PJ (2010) Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Sci Hortic (Amsterdam) 126:138–144. doi:10.1016/j.scienta.2010.06.022

    Article  Google Scholar 

  92. Terzopoulos PJ, Kaltsikes PJ, Bebeli PJ (2008) Determining the sources of heterogeneity in Greek faba bean local populations. Field Crop Res 105:124–130. doi:10.1016/j.fcr.2007.08.006

    Article  Google Scholar 

  93. Thomas K, Thanopoulos R, Knüpffer H, Bebeli PJ (2012) Plant genetic resources of Lemnos (Greece), an isolated island in the Northern Aegean Sea, with emphasis on landraces. Genet Resour Crop Evol 59:1417–1440. doi:10.1007/s10722-011-9770-x

    Article  Google Scholar 

  94. Thomas K, Thanopoulos R, Knupffer H, Bebeli PJ (2013) Plant genetic resources in a touristic island: the case of Lefkada (Ionian Islands, Greece). Genet Resour Crop Evol 60:2431–2455. doi:10.1007/s10722-013-0011-3

    Article  Google Scholar 

  95. Timko MP, Singh BB (2008) Cowpea a multifunctional legume. In: Moore PH, Ming R (eds) Genomics of Tropical Crop Plants. Plant Genetics and Genomics. Springer, New York, pp 227–258

    Google Scholar 

  96. Timko MP, Ehlers JD, Roberts PH (2007) Cowpea. In: Kole C (ed) Genome mapping and molecular breeding in plants, volume 3 pulses, sugar and tuber crop, Springer, Heidelberg, pp 49–67

    Google Scholar 

  97. Tosti N, Negri V (2005) On-going on-farm microevolutionary processes in neighbouring cowpea landraces revealed by molecular markers. Theor Appl Genet 110:1275–1283. doi:10.1007/s00122-005-1964-1

    CAS  Article  PubMed  Google Scholar 

  98. Valencia-Cantero E, Hernández-Calderón E, Velázquez-Becerra C, López-Meza JE, Alfaro-Cuevas R, López-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273. doi:10.1007/s11104-007-9191-y

    CAS  Article  Google Scholar 

  99. Weir BS (1990) Genetic Data Analysis. Sinauer Associates, Inc., Publishers, Sunderland

    Google Scholar 

  100. Zeven AC (1997) The traditional inexplicable replacement of seed and seed ware of landraces and cultivars: a review. Euphytica 104:127–139. doi:10.1023/A:1003701529155

    Article  Google Scholar 

  101. Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139. doi:10.1023/A:1018683119237

    Article  Google Scholar 

  102. Zhang Y-Y, Fisher M, Color V, Bossdorf O (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol 197:314–322. doi:10.1111/nph.12010

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research study was funded by the 7th Framework Programme: “EUROLEGUME”: “Enhancing of legumes growing in Europe through sustainable cropping for protein supply for food and feed” (Grant Agreement No: 613781). We would like to thank Dr. R. Thanopoulos from Agricultural University of Athens, for participating in the collection of the seed material, the farmers that shared with us the seeds of their landraces used in this study and Mr. A. Georgiou for his contribution. We would also like to thank the anonymous reviewers for their valuable comments and suggestions to improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. J. Bebeli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Origin and geographical data of the cowpea local populations (DOC 60 kb)

Online Resource 2

Mean phenotypic diversity values (\( \bar{H}p \)) of cowpea populations and min and max Hp values observed within each studied population using all agro-morphological traits studied (DOCX 19 kb)

Online Resource 3

Pearson correlation coefficients among yield traits, seed mineral and protein content. Number of nodes (NN), number of main branches (NBR), plant height (PH), growth habit (GH), days to 1st flower (DFL), flowering duration (DUFL), days to 1st mature pod (DMAT), height to 1st pod (H1POD), number of pods per plant (NPOD), pod length (PODL), number of seeds per pod (SPOD), number of seeds per plant (SPL), seed weight per plant (SW), hundred seed weight (HSW), seed crude protein (CP (%)) (DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lazaridi, E., Ntatsi, G., Savvas, D. et al. Diversity in cowpea (Vigna unguiculata (L.) Walp.) local populations from Greece. Genet Resour Crop Evol 64, 1529–1551 (2017). https://doi.org/10.1007/s10722-016-0452-6

Download citation

Keywords

  • Breeding
  • Descriptors
  • Landraces
  • Mineral content
  • Phenotypic characterization
  • Protein content
  • Vigna unguiculata