Genetic Resources and Crop Evolution

, Volume 64, Issue 6, pp 1451–1463 | Cite as

Genome size estimations in Chrysanthemum and correlations with molecular phylogenies

  • Chang Luo
  • Dongliang Chen
  • Xi Cheng
  • Huien Zhao
  • Conglin HuangEmail author
Research Article


A wide range of ploidy variation exists among native Chinese Chrysanthemum germplasm. This study examined the evolution of genome size, Cx value, and chromosome number in Chinese Chrysanthemum within a phylogenetic context. The genome size of 15 species belonging to Chrysanthemum and three related genera was determined using flow cytometry. Nuclear ribosomal ITS and chloroplast trnL-F intergenic spacer sequence were used to construct molecular phylogenetic trees. Genome size values among the 15 species divide into three discrete groups, which positively correlate with three ploidy levels. We found significantly and negatively correlated 1Cx values to ploidy levels in all 15 species and a genome downsizing after polyploidization effect in Chrysanthemum. Two major phylogenetic clade, the C. indicum group and the C. zawadskii + Ajania group, possess significant differences in genome size and 1Cx values. The genome size and 1Cx values in the C. indicum group were significantly lower than in the C. zawadskii group, even though both have same ploidy level, and significant latitude and morphology correlations can be inferred. Diploid Chrysanthemum species similar in 1Cx values to C. indicum (Mt.Tianzhu) and C. indicum (Fujian) indicate that some populations of tetraploid C. indicum originated by autoploidy. We deduced that C. chanetii is a relatively young species, C. vestitum relative ancient and that the divergence between Chrysanthemum and Ajania may have been relatively recent, presumably the same divergence as created C. zawadskii.


Ajania China Chrysanthemum Flow cytometry Genome size Phylogeny 



This research was mainly supported by The Project of Science and Technology of Beijing Academy of Agriculture and Forestry Sciences (KJCX20140109, KJCX20140202).

Compliance with ethical standards

Conflict of interest

The authors state no conflict of interests.


  1. Bancheva S, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Plant Syst Evol 257:95–117CrossRefGoogle Scholar
  2. Bayer RJ, Cross EW (2003) A reassessment of tribal affinities of Cratystylis and Haegiela (Asteraceae) based on three chloroplast DNA sequences. Plant Syst Evol 236:207–220CrossRefGoogle Scholar
  3. Bayer RJ, Starr JR (1998) Tribal phylogeny of the Asteraceae based on two non-coding chloroplast sequences, the trnL intron and trnL/trnF intergenic spacer. Ann Mo Bot Gard 85:242–256CrossRefGoogle Scholar
  4. Bennert HW et al (2011) Flow cytometry confirms reticulate evolution and reveals triploidy in central European Diphasiastrum taxa (Lycopodiaceae, Lycophyta). Ann Bot London 108:867–876CrossRefGoogle Scholar
  5. Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36CrossRefPubMedGoogle Scholar
  6. Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot London 95:127–132CrossRefGoogle Scholar
  7. Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L (2000) Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW patagonian species of Berberis L. (Berberidaceae). Ann Bot London 86:565–573CrossRefGoogle Scholar
  8. Bremer K, Humphries CJ (1993) Generic monograph of the Asteraceae-Anthemideae. B Nat Hist Mus Bot 23:71–177Google Scholar
  9. Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079CrossRefPubMedPubMedCentralGoogle Scholar
  10. Díez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernez S, Eguiarte LE, Tenaillon MI (2013) Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytol 199:264–276CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dolezel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot London 95:99–110CrossRefGoogle Scholar
  12. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot London 82:17–26Google Scholar
  13. Dowrick GJ (1953) The chromosomes of Chrysanthemum. Heredity 7:59–72CrossRefGoogle Scholar
  14. Du B, Liu Q, Zhu C, Ke S (1989) Karyotype studies of two species on Dendranthema. J Wuhan Bot Res 3:293–296Google Scholar
  15. Fukai S, Zhang W, Goi M (1998) Some Dendranthema species native to Japan. Acta Hortic 454:85–90CrossRefGoogle Scholar
  16. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot London 95:91–98CrossRefGoogle Scholar
  17. Huien Z, Wang X, Chen J, Deyuan H (2003) The origin of garden chrysanthemums and molecular phylogeny of Dendranthema in China based on nucleotide sequences of nrDNA ITS, trnT-trnL and trnL-trnF intergenic spacer regions in cpDNA. Mol Plant Breed 1:597–604Google Scholar
  18. Jr CJ, Zahradnícek J, Krak K, Fehrer J (2009) Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann Bot London 104:161–178CrossRefGoogle Scholar
  19. Kellogg EA, Bennetzen JL (2004) The evolution of nuclear genome structure in seed plants. Am J Bot 91:1709–1725CrossRefPubMedGoogle Scholar
  20. Lassner MW, Peterson P, Yoder JI (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7:116–128CrossRefGoogle Scholar
  21. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants: genome downsizing in polyploids. Biol J Linn Soc 82:651–663CrossRefGoogle Scholar
  22. Leong-Skornicková J, Sída O, Jarolímová V, Sabu M, Fér T, Trávnícek P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann Bot-London 100:197–209CrossRefGoogle Scholar
  23. Li D, Zhao P (1998) Study on the karyotype of Dendranthema vestitum (Hemsl.) Ling. J Anhui Agr Coll 25(4):433–438Google Scholar
  24. Li M, Zhang X, Chen J (1983) Cytological studies on some chinese wild Dendranthema species and Chrysanthemum cultivars. Acta Hortic Sin 10:199–206Google Scholar
  25. Li J, Wan Q, Abbott RJ, Rao G-Y (2013) Geographical distribution of cytotypes in the Chrysanthemum indicum complex as evidenced by ploidy level and genome-size variation. J Syst Evol 51:196–204CrossRefGoogle Scholar
  26. Li J, Wan Q, Guo YP, Abbott RJ, Rao GY (2014) Should I stay or should I go: biogeographic and evolutionary history of a polyploid complex (Chrysanthemum indicum complex) in response to pleistocene climate change in China. New Phytol 201:1031–1044CrossRefPubMedGoogle Scholar
  27. Lin YR, Shi Z, Humphries CJ, Gilbert MG (2011) Anthemideae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 20–21 (Asteraceae). Sci Press/Miss Bot Gard Press, Beijing/St Louis, pp 653–733Google Scholar
  28. Liu PL, Wan Q, Guo YP, Yang J, Rao GY (2012) Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS ONE 7(11):4237–4243Google Scholar
  29. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869CrossRefPubMedPubMedCentralGoogle Scholar
  30. Oberprieler C (2002) A phylogenetic analysis of Chamaemelum Mill. (Compositae: Anthemidae) and related genera based upon nrDNA ITS and cpDNA trnL/trnF IGS sequence variation. Bot J Linn Soc 138:255–273CrossRefGoogle Scholar
  31. Oberprieler C, Vogt R (2000) The position of Castrilanthemum Vogt & Oberprieler and the phylogeny of Mediterranean Anthemideae (Compositae) as inferred from nrDNA ITS and cpDNA trn L/trn F IGS sequence variation. Plant Syst Evol 225:145–170CrossRefGoogle Scholar
  32. Oberprieler C, Vogt R (2007) A new subtribal classification of the tribe Anthemideae (Compositae). Willdenowia 37:89–114CrossRefGoogle Scholar
  33. Ohri D, Khoshoo TN (1986) Genome size in gymnosperms. Plant Syst Evol 153:119–132CrossRefGoogle Scholar
  34. Pellicer J, Leitch IJ (2014) The application of flow cytometry for estimating genome size and ploidy level in plants. In: Methods in Molecular Biology, vol 1115. Humana Press, Clifton NJ, pp 279–307Google Scholar
  35. Petrov DA (2002) DNA loss and evolution of genome size in Drosophila. Genetica 115:81–91CrossRefPubMedGoogle Scholar
  36. Rayburn AL, Auger JA (1990) Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theor Appl Genet 79(4):470–474CrossRefPubMedGoogle Scholar
  37. Reeves G, Francis D, Davies MS, Rogers HJ, Hodkinson TR (1998) Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata. Ann Bot-London 82:99–105CrossRefGoogle Scholar
  38. Sanz M, Vallès J (2008) Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences. Taxon 57:66–78Google Scholar
  39. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  41. Veselý P, Bureš P, Šmarda P, Pavlíček T (2012) Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Ann Bot London 109:65–75CrossRefGoogle Scholar
  42. Wagstaff SJ, Breitwieser I (2002) Phylogenetic relationships of New Zealand Asteraceae inferred from ITS sequences. Plant Syst Evol 231:203–224CrossRefGoogle Scholar
  43. Wang JW (1991) Karyotypical study of five species of chinese Dendranthema. Acta Bot Yunnan 4:411–416Google Scholar
  44. Wang X, Li M (1987) Observation of chromosomes on 10 Compositae species. J Wuhan Bot Res 2:111–117Google Scholar
  45. Watson LE, Bates PL, Evans TM, Unwin MM, Estes JR (2002) Molecular phylogeny of subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol Biol 2(2):17CrossRefPubMedPubMedCentralGoogle Scholar
  46. Weiss-schneeweiss H, Greilhuber J, Schneeweiss GM (2006) Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 93:148–156CrossRefGoogle Scholar
  47. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA enes for phylogenetics. Pcr Protoc 38:315–322Google Scholar
  48. Yang W, Glover BJ, Rao GY, Yang J (2006) Molecular evidence for multiple polyploidization and lineage recombination in the Chrysanthemum indicum polyploid complex (Asteraceae). New Phytol 171:875–886CrossRefPubMedGoogle Scholar
  49. Yu M, Yukawa T, Kondo K (2009) Molecular phylogenetic analysis of members of Chrysanthemum and its related genera in the tribe anthemideae, the asteraceae in East Asia on the basis of the internal transcribed spacer (ITS) region and the external transcribed spacer (ETS) region of nrDNA. Chromosome Bot 4:25–36CrossRefGoogle Scholar
  50. Zhao HB, Chen FD, Chen SM, Wu GS, Guo WM (2010) Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trn L-F IGS sequences. Plant Syst Evol 284:153–169CrossRefGoogle Scholar
  51. Zhou C (2002) AFLP analysis of some Dendranthema spp. J Beijing For Univ Z1:72–76Google Scholar
  52. Zhou S, Wang J (1997) The cytologic study on ten species of Endranthema. J Wuhan Bot Res 15:289–292Google Scholar
  53. Zhou S, Zang D, Zhao L (1996) A new combination variety of Dendranthema. B Bot Res 16:296–297Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Chang Luo
    • 1
  • Dongliang Chen
    • 1
  • Xi Cheng
    • 1
  • Huien Zhao
    • 2
  • Conglin Huang
    • 1
    Email author
  1. 1.Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing Municipal Key Laboratory of Agro-gene Resource and BiotechnologyBeijingPeople’s Republic of China
  2. 2.Department of Ornamental Horticulture, College of Landscape ArchitectureBeijing Forestry UniversityBeijingPeople’s Republic of China

Personalised recommendations