Conserving seeds of useful wild plants in Mexico: main issues and recommendations


The efficient storage and germination of seeds underpin the effective use of plants for livelihoods and sustainable development. A total of 204 wild species useful for local communities of the Tehuacán–Cuicatlán Valley were collected and stored in seed banks in country for long term conservation, and 66 % (i.e., 134) duplicated in the U.K., as an effective means of ex situ conservation. Of the 204 species, 147 (122 of which also duplicated in the U.K.) were previously listed as useful plants in the ethnofloristic inventory of the Valley. Based on literature surveys, we found that one of the major impediments to the use of stored seeds of wild species is the lack of knowledge of how to germinate the seed. In detailed studies, we found that seeds of 18 useful plant species from 10 different families germinated readily and could be propagated. In contrast, four species (Actinocheita filicina, Bursera submoniliformis, Karwinskia mollis and Lippia graveolens) produced dormant seeds and therefore further studies are needed before their use can be maximised in large scale propagation programmes in support of conservation and livelihoods. Overall, this large-scale study on useful wild plant species in Mexico confirms that conventional seed banking can effectively support sustainable development and livelihood programmes.


Current global plant diversity extinction is estimated to be as much as 100- to 1000-fold higher than during the recent geological past (Pimm et al. 1995). In situ conservation measures, such as the protection and restoration of natural habitats, are the best methods of preserving plant diversity (CBD 2002). However, ex situ conservation acts as a back-up for certain segments of diversity that might otherwise be lost in nature and in human-dominated ecosystems, generally through the maintenance of clonal crops in field gene banks and in vitro banks, certain trees in conservation stands, and many seed-bearing species in botanic gardens and/or in conventional or cryogenic seed banks (Li and Pritchard 2009). One of the most effective ways to conserve ex situ plant diversity is through germplasm storage in seed banks, which allows the preservation of large amounts of genetic material in a small space and with minimum risk of genetic damage (Iriondo and Pérez 1999), at least for species with orthodox (i.e. desiccation tolerant) seeds. Such seeds tolerate drying to very low moisture contents (≤3–7 % fresh weight), and their longevity increases as moisture content and temperature are reduced (Roberts 1973). In situ and ex situ conservation approaches should be viewed as complementary rather than alternative. However, there are economic drivers working against in situ conservation, with the costs for ex situ conservation being estimated as little as 1 % of those needed for in situ, although ex situ conservation must still address some technical challenges (Li and Pritchard 2009).

Seed collecting represents a first critical step of the seed banking process, which should be adressed carefully in order to achieve high quality seed collections, capture the highest genetic diversity of the targeted populations and, at the same time, not pauperize their in situ genetic resources. In particular, seed collections may be affected by high percentages of empty or damaged (by insects or pathogens) seeds (Way 2003).

Once collected, one of the major impediments to the potential use of wild species germplasm for species reintroduction or habitat restoration is the lack of knowledge of how to break seed dormancy and enhance germination (Hay and Probert 2013). Intact viable seeds may fail to complete germination even under favourable conditions and this phenomenon is called “seed dormancy”. The primary function of seed dormancy is to prevent germination during periods that are unsuitable for germination and establishment or, more precisely, when conditions are suitable for germination, but the probability of survival and growth of the seedlings is low (Fenner and Thompson 2005). Dormancy is likely to be lost during storage, and the conditions required for germination (in particular, temperature) become less specific (Probert 2000), although the rate of dormancy loss is likely to be slower in seed bank storage than it would be in room conditions (Roberts 1988). During seed bank storage, induction of dormancy can also occur (e.g. Pérez-García et al. 2007) and in the Millennium Seed Bank (MSB) of the Royal Botanic Gardens, Kew (RBG Kew) there have been instances where stored accessions have failed a germination retest carried out using the same treatments and/or conditions that were found to be optimum at the start of the storage (Hay and Probert 2013).

These issues are of particular relevance when working with wild species, whose seed dormancy breaking and germination conditions are unknown or poorly investigated and for which ex situ conservation is intended as a support to their propagation and reintroduction. Useful wild species are still poorly represented in gene banks’ collections (Padulosi et al. 2002) whilst ex situ conservation of crop diversity, as a global concern, has received historic support in the development of an efficient and sustainable system recognized in international law and policy, as recently confirmed by the safety duplication collection in the Svalbard Global Seed Vault (Westengen et al. 2013). However, a more recently study concluded that the diversity of crop wild relatives is also poorly represented in gene banks, with over 70 % of taxa identified as high priority for further collecting (Castañeda-Álvarez et al. 2016).

The cultural area known as Mesoamerica (between central Mexico and northern Costa Rica) is recognized as one of the most important centres of cultural diversity and biological richness of the world (Hernández-Xolocotzi 1993; Rzedowski 1993; Toledo et al. 1997). Humans and plants have interacted here for nearly 12,000 years (MacNeish 1992) and such a long and systematic interaction has led to the construction of rich knowledge regarding the use of a wide range of plants. It has been estimated that nearly 5000–7000 species are used in Mexico (Casas et al. 1994). Nearly 90 % of these useful plants are native wild species gathered traditionally (Caballero et al. 1998), whereas nearly 20 plant species (such as corn, beans, cocoa, chili peppers, cotton, and squashes) are important economic crops on a global scale whose extraordinary diversity of landraces and populations of wild relatives constitute highly relevant genetic resources (Lira et al. 2009a).

The Tehuacán–Cuicatlán Valley (Puebla, Central Mexico) is probably the most diverse arid region of North America (Dávila et al. 2002) and it is now an important natural protected area. The relationship between humans and plants in the area is as important today as it has been historically and these interactions, from prehistory to the present day, have been well documented (Casas et al. 2001). Lira et al. (2009a) recorded a total of 1,605 useful vascular plant species (61.2 % of the total species richness of the regional vascular flora) for this Valley, which shows the highest absolute richness of useful plants in Mexico.

Since February 2002, the RBG Kew and the Facultad de Estudios Superiores, Iztacala (Fes-I) of the National University of Mexico (UNAM) have been working together for the seed conservation of wild endemic, narrowly distributed, rare and threatened plant species or wild relatives of economically important species from the arid and semiarid areas of Mexico (León-Lobos et al. 2012). This collaboration was established under an Access and Benefit Sharing Agreement (ABSA) in the framework of the MSB Project (lately MSB Partnership). The ex situ conservation and study of useful plants of the arid and semiarid areas of Mexico has been carried out since 2007 through “The Project MGU—the Useful Plant Project” (UPP) under the umbrella of the MSBP. The UPP, managed by RBG Kew, uses an applied scientific approach to conserve and sustainibly use indigenous plants which are important to local rural communities in Mexico, Botswana, Mali, Kenya and South Africa. The project has brought together staff from RBG Kew, and a wide range of national scientific institutions, to help local communities tackle the environmental challenges threatening their livelihoods through the conservation and sustainable use of indigenous plant species (Ulian et al. 2016). The UPP in Mexico has been led by Fes-I UNAM, based in Mexico City, and has worked in the Coxcatlán municipality (Puebla) in the Tehuacán–Cuicatlán Valley. Seeds were collected and stored at the Fes-I Seed Bank and duplicated at the RBG Kew’s MSB in the U.K. Propagation activities were carried out at the Fes-I UNAM and replicated in the local communtity, in the framework of the project.

Therefore, the aim of this paper was to evaluate the contribution of seed banking and germination studies on the conservation of useful wild plants as a support to sustainable development and livelihood programmes.

Materials and methods

Study area

The study area was limited to the Coxcatlán municipality in the Tehuacán–Cuicatlán Valley and in particular to the villages of San Rafael, San José Tilapa and Guadalupe Victoria, in the state of Puebla (Central Mexico). This area, which covers ca. 6 km2, is located at ca. 1200 m a.s.l., and the local climate is semi-arid to arid. The mean annual temperature is 22 °C, varying between 25 °C in April and May, and 18 °C in January. Rainfall is concentrated in the summer, from June until September and the total annual precipitation is 394.6 mm (Medina 2000). The main communities originated from the state of Oaxaca and southern Puebla. Their understanding of the local natural resources grew through the adoption of knowledge from neighbouring villages and the discovery of new uses of the local species (Rosas 2003). The most important economic activity in the region is the production of sugarcane, beans, squashes and maize, which is complemented by the gathering of wild plants and insects (e.g. “cocopaches”, Thasus sp., Coreidae) for direct consumption or commercialization (Pardo 2001).

Seed banking

The ethnofloristic inventory carried out by Lira et al. (2009a) for the whole Tehuacán–Cuicatlán Valley was used as a reference of useful plants present in the study area. This inventory originally counted 1605 useful plants belonging to 671 genera and 147 families (Lira et al. 2009a). For the purpose of this study, only vascular plants were considered and the list was nomenclaturaly checked and updated according to The Plant List (2013). In addition, the desiccation tolerance of the seeds of these species were evaluated using the Seed Information Database, SID (Royal Botanic Gardens Kew 2014) so that species with (or likely to have) intermediate or desiccation sensitive seeds were discarded. This led to a total of 1,162 useful vascular plants, belonging to 578 genera and 111 families, with a putative orthodox seed storage behaviour (see Appendix 1).

From 2007 to date, seed collection expeditions have been carried out in the study area as an activity of the UPP (Ulian et al. 2016). Ethnobotanical, biological, and ecological information on useful plants was documented by consultations with local communities and through literature reviews (e.g. Lira et al. 2009a). Plants with a putative orthodox seed storage behaviour (see Appendix 1) were then prioritized for seed collecting, although opportunistic collections were also made on other useful native wild species identified in the study area. The choice of the optimal timing for seed collection, as well as harvesting methods and quantity of material to be collected, were regulated by legal (ABSA), ethical and scientific criteria that guarantee a high quality of the collected material (Way 2003) and avoided the pauperization of the in situ genetic resources (Menges et al. 2004).

The collected seeds have been stored in the Fes-I UNAM Seed Bank. Seeds of species for which a seed desiccation sensitive behaviour is reported, or could be inferred, were not collected, while collected seed lots have been banked following the procedures for orthodox seeds (Terry et al. 2003). Once in the bank, after the samples had been registered, seeds were stored in the lab (23 °C and R.H. 28 %) and cleaned manually and mechanically by a gravimetric separator (Mod. CB-1, Agriculex Inc.). Priority for the cleaning was given to fresh fruits for which seeds are separated from the pulp under running tap water and then left to dry. To achieve seed moisture content values between 3.5 and 6.5 % (Linington 2003) viable seeds were then placed in the dry room (T 14 °C and R.H. 11 %) for 4–6 weeks and then stored at −20 °C in aluminium bags. Duplicates of seed lots (when enough seeds were available) were sent after drying to the MSB (U.K.) for backup storage and testing.

In country germination experiments

Seed lots were tested for germination at Fes-I UNAM Seed Bank using an incubator (ICP-18 d-c/iv Lumistell®) set at the constant temperature of 30 °C and a photoperiod of 12 h of irradiance per day (with 10 white neon lights corresponding to 5100 lux). The incubation temperature is coherent with the requirement of high germination temperatures for species of hot deserts and semi-deserts, which range, according to their life forms, from ca. 20 to ca. 27 °C for annuals and vines, respectively (Baskin and Baskin 2014). This pattern was recently confirmed by Ordõnez-Salanueva et al. (2015), who identifed an optimum temperature for germination rate of ca. 30 °C for seeds of two Polaskia species collected in the study area (Puebla, Tehuacán–Cuicatlán Valley). Light requirement for seed germination is reported to be related to seed mass, with seeds smaller than 1.5 mg likely to require light for germination (Jankowska-Blaszczuk and Daws 2007). Seed mass of the collected species ranged from ca. 0.05 mg to ca. 1.2 g for Nicotiana glauca and Proboscidea louisianica, respectively (Royal Botanic Gardens Kew 2014), with 25 % of the collected species having a seed mass ≤1.5 mg (data not shown).

Cleaned seeds were sown on the top of one sheet of filter paper, in 60- or 90-mm-diameter glass Petri dishes (3 replicates of 20 seeds each), according to seed size. Seeds were sown without any pre-treatment except for those of Leguminosae which were chipped before sowing to break physical dormancy and allow water imbibition. Germination was defined as visible radicle emergence to ≥1 mm and germinated seeds were scored three times a week. Germination tests lasted 20 days and then at the end of the test, a cut-test was carried out to determine the viability of the remaining seeds. Soft, mouldy seeds were considered to be non-viable.

Seed testing at RBG Kew’s MSB

Seed lots duplicated at the RBG Kew’s MSB were tested after cleaning for seed lot quality and germination and viability. In order to estimate seed lot quality, empty or insect-infested seeds present in a subsample (approximately 50 seeds) of the whole seed lot were evaluated using a MX20 Faxitron X-ray unit, with a <20 μm focal spot and 5× geometric magnification (Faxitron Bioptics, LLC, Tucson, Arizona).

Seed germination was assessed about 1 month after storage at −20 °C. The number of seeds in each treatment sample was usually 20 or 50 seeds, according to seed availability. For very small collections, as few as 10 seeds were used although seed lots with less than 500 good quality seeds were left untested. Seeds were sown on 1 % water agar in plastic Petri dishes and then placed at an appropriate temperature in an illuminated incubator (8 h fluorescent light/16 h dark). Germination (usually to ≥1 mm protrusion of radicle) was recorded weekly and the germinated seeds removed and discarded. When no germination occurred during 2 weeks following 4 weeks of testing, the test was terminated and the remaining seeds evaluated by a cut-test to ascertain whether they were full, empty or mouldy. Soft, mouldy seeds were considered to be non-viable. The particular germination conditions to break seed dormancy for the investigated species (gibberellic acid in the substrate, scarification or stratification treatments) were chosen according to data accumulated previously at the RBG Kew and by information from literature (Terry et al. 2003).

Data analysis

The representativeness of each family in the inventory of useful plant families of the Tehuacán–Cuicatlán Valley (Appendix 1) was calculated as the percentage of useful species in the family against the total number of species in the inventory. The representativeness of each useful plant family against the total useful species stored at the Fes-I Seed Bank was calculated in the same way.

According to Godefroid et al. (2010), the dormancy status was determined using the following equation (Offord et al. 2004):

$$ {\text{Dormancy}}\;{\text{Index}}\;\left( {\text{DI}} \right) = 1{-}\left( {{\text{seed}}\;{\text{germinated}}\;\% /{\text{viable}}\;{\text{seeds}}\;\% } \right). $$

The percentage of germinated seeds was calculated on the basis of tested viable seeds. For the purpose of this study this index does not include physical dormancy as seeds of species for which this was assumed (i.e. Leguminosae) were scarified before sowing for germination. The higher the value of the index the more likely that the seed lot was dormant, and DI ≥0.4 was used as threshold value to indicate dormancy (Offord et al. 2004).

Simple linear regressions were fitted to identify correlations among the most important families of the Tehuacán–Cuicatlán Valley and those stored at the Fes-I UNAM Seed Bank and between the DI values achieved for each species at both the RBG Kew’s MSB and Fes-I UNAM. Statistical analysis were carried out using R v. 2.14.1 (R Development Core Team 2011).

Uses of species were compiled from Lira et al. (2009a) and complemented by field observations through during the UPP. The standardization of plant uses followed the first level of uses in the “Economic Botany data collection standards” (Cook 1995) revised together with the author of the standardization through the work of the UPP.


Seed conservation

The families of the Tehuacán–Cuicatlán Valley which had most useful plants with orthodox seeds, were Poaceae, Leguminosae, Compositae, Cactaceae, Cyperaceae, Solanaceae, Euphorbiaceae, Malvaceae, Asparagaceae and Crassulaceae. Figure 1A reports their proportions, expressed as a percentage of the species in each family relative to the total number of species of the inventory of useful plants (Lira et al. 2009a, modified; Appendix 1). During the UPP, a total of 204 useful plant species, from 142 genera and 48 families, were collected and stored at the Fes-I UNAM Seed Bank. Of these, 147 (belonging to 104 genera and 36 families) are included in the inventory of useful plants (Appendix 1). Therefore ca. 12 % of the useful plants of the whole Tehuacán–Cuicatlán Valley is currently stored for long term conservation at the Fes-I UNAM Seed Bank. Furthermore, 134 taxa from 101 genera and 40 families are also duplicated at the RBG Kew’s MSB and 122 of them (belonging to 91 genera and 36 families), included in the inventory of useful plants (Appendix 1).

Fig. 1

A The 10 most important families of the Tehuacán–Cuicatlan Valley according to their representation in the bankable useful flora (i.e. species with orthodox seeds) of the Tehuacán–Cuicatlán Valley (see Appendix 1) and their representativeness in the Fes-I UNAM Seed Bank collections. Data are expressed as percentages of the total number of useful species in the inventory and of that of useful species stored at the Fes-I UNAM. B Correlation between representativeness of the most important families according to their richness in useful plants (Appendix 1: Lira et al. 2009a, modified) and that of families stored at the Fes-I UNAM Seed Bank. Data are expressed as percentages of the total number of useful species in the inventory (Lira et al. 2009a, modified) and of that of useful species stored at the Fes-I UNAM Seed Bank. Linear regression was calculated without considering the values of Cyperaceae and Poaceae (grey circles); n = 39. The five most important useful plant families have been labelled (see Fig. 1) and the 1:1 line has also been plotted in the graph

The representativeness of the most important families of the Tehuacán–Cuicatlán Valley in the Fes-I Seed Bank, calculated as percentage of species in respect to the total of useful species stored at the seed bank, is reported in Fig. 1b. Representativeness of the useful plant families on the inventory and that of those stored at the Fes-I UNAM Seed Bank had the same trend (R2 = 0.25; p = 0.0008; y = 0.44x + 1.49; n = 41), except for the Poaceae and Cyperaceae which are underrepresented and the Cactaceae which are overrepresented (Fig. 1B). A linear regression carried out without Poaceae and Cyperaceae confirmed this correlation (R2 = 0.89; p < 0.0001; n = 39), with a x coefficient close to 1 (a = 1.25; Fig. 1B).


All the main categories of uses were represented by the species stored at the Fes-I Seed Bank. The most represented are species with environmental uses (22.3 %), followed by species used as medicines (18.7 %), fodder (animal food, 16.2 %) food (15.7 %) and materials (Fig. 2A). In Fig. 2B the records of uses are grouped for each of the 10 most important useful plants families (see Fig. 1A).

Fig. 2

Uses of the plants stored at the Fes-I UNAM Seed Bank. A Uses grouped according to the first level of Economic Botany data collection standards (Cook 1995, modified) as percentages of records in relation to the total. B Records of uses for each of the most important useful plant families of the Tehuacán–Cuicatlan Valley

Leguminosae is the family with the highest number of records of uses (62), followed by Cactaceae (42), Compositae (39) and Asparagaceae (29; Fig. 2B). Cactaceae is the family with the highest number of species used as food, Leguminosae and Compositae have the most species used as medicines and Asparagaceae has most used as materials (Fig. 2B).

Seed lot quality

The X ray analysis was carried out on seed lots of 72 species duplicated at the RBG Kew’s MSB. Only 11 taxa (which correspond to the 15 % of the analysed taxa) had a percentage of filled seeds ≤50 % (Table 1). About 70 % of the stored species had very few empty and infested seeds with > 80 % of filled seeds.

Table 1 Useful species for which a percentage of filled seeds ≤50 % was detected by X-ray analysis at the RBG Kew’s Millennium Seed Bank (MSB)

Seed dormancy breaking and germination requirements

Seed germination experiments were carried out on seed lots of 77 species at the Fes-I UNAM Seed Bank. The results highlighted a poor seed viability for only 3 species, Heliocarpus terebinthinaceus (Malvaceae), Jatropha neopauciflora (Euphorbiaceae) and Actinocheita filicina (Anacardiaceae) showing values <50 % (Fig. 3). The majority of the seed lots (75 %) showed viability values higher than 90 % (Fig. 3). About 51 % of the investigated species showed Dormancy Index values lower than 0.4 (i.e. non dormant) with 27 % being completely non dormant (DI = 0; Appendix 2). On the contrary, seeds of five species were completely dormant (DI = 1): Coursetia caribaea (Leguminosae), Passiflora foetida (Passifloraceae), Cardiospermum halicacabum (Sapindaceae), Melochia tomentosa (Malvaceae) and Bursera aptera (Burseraceae).

Fig. 3

Coplot indicating the common occurrence of seed viability and seed dormancy index (DI) for the 77 useful plants tested for seed germination at the Fes-I UNAM Seed Bank. The grey area highlights seed lots with DI >0.4 which are considered to be dormant (Offord et al. 2004). Ht: Heliocarpus terebinthinaceus, Jn: Jatropha neopauciflora, and Af: Actinocheita filicina

Seed germination experiments were carried out on 51 species at the MSB. Results and conditions applied are listed in Appendix 2. Nine taxa (corresponding to 18 %) were dormant (DI > 0.4; Table 2), while the remaining 82 % of the tested species had seed lots with DI values lower than 0.4 and therefore could be considered as non dormant, with 51 % (26 species) being completely non dormant (DI = 0; Appendix 2). Differences on DI values for the same species were due to the different applied germination conditions (see Appendix 2).

Table 2 Useful species for which seed dormancy issues were detected at the RBG Kew’s Millennium Seed Bank (MSB) (DI > 0.4; Offord et al. 2004)

Seed germination experiments were carried out both at the RBG Kew’s MSB and at the Fes-I UNAM Seed Bank for 35 taxa. The linear regression did not highlight any statistically significant correlation (p = 0.97; n = 35) between the DI values achieved for each species, mainly due to the different applied germination conditions (see Appendix 2). The taxa for which the dormant status (i.e., DI > 0.4) detected at the RBG Kew’s MSB was confirmed by the results achieved at the Fes-I UNAM are highlighted in bold in Table 2. The 16 taxa for which the non dormant satus (i.e., DI < 0.4) detected at the RBG Kew’s MSB was confirmed by the results achieved at the Fes-I UNAM are listed in Table 3.

Table 3 Taxa for which the non dormant status detected at the Millennium Seed Bank (MSB) (DI < 0.4; Offord et al. 2004) was confirmed by the experiments carried out at the Fes-I UNAM Seed Bank


Conventional seed banking of useful plant species

Although the activities of the UPP focused in an area which corresponds to less than 1 % of the whole Tehuacán–Cuicatlan Valley, ca. 12 % of the whole flora of bankable useful plants (i.e. desiccation tolerant species; see Appendix 1) have been collected and stored at the Fes-I UNAM Seed Bank. This excludes the Fagaceae, one of the most important useful plant families in the Valley (Lira et al. 2009a), including the genus Quercus in particular whose species have been reported to have recalcitrant seeds (Hong et al. 1998; Xia et al. 2012) and for which alternative measures, such as cryopreservation of the embryonic axes, should be applied in order to guarantee their long term conservation (Gonzalez-Benito and Perez-Ruiz 1992). These results are of particular importance when the poor representation of underutilised species, including crop wild relatives, in ex situ gene banks’ collections globally (Padulosi et al. 2002; Castañeda-Álvarez et al. 2016) is considered in conjunction with the potential loss of effectiveness of protected areas (i.e. in situ conservation) in preserving underutilised species under future climate change conditions (Lira et al. 2009b).

The most useful plant families with desiccation tolerant seeds are well represented in terms of number of useful species stored at the Fes-I UNAM Seed Bank, except for Poaceae and Cyperaceae. These two families are among the most demanded plants that are used as fodder (Lira et al. 2009a). However, their difficult taxonomic identification in the field as well as the unpredictability of their seed dispersal time, which in annual species living in semiarid environments is strongly related to rainfall patterns, affected the planning and implementation of seed collection for these species. The selection of target species for seed collections was also influenced by the preference of local rural communities for human food and multi-purpose species, such as the Cactaceae (Lira et al. 2009a), which are over-represented among the collections of the Fes-I Seed Bank. This positive bias on representativity may therefore be determined by a sort of “flag species” effect, in order to answer the needs of the communities involved in the UPP which aimed to support the improvement of their wellbeing (Ulian et al. 2016). It should also be highlighted that for conservation value, only 83 taxa of Cyperales (Cyperaceae plus Graminae/Poaceae) are listed in the IUCN Global Red List, with only one of them (Carex austromexicana Reznicek) reported as critically endangered (CR), whilst these figures increase to 596 taxa (32 CR) for the Cactaceae (IUCN 2015).

It should also be considered that these figures refer to the UPP only, whereas a broader seed collecting and conservation programme focusing on plant conservation in the drylands has been active since 2002 in the same region through the MSB Partnership (see León-Lobos et al. 2012).

Seed longevity under conventional seed banking conditions

High viability was detected for the stored seed lots, reaching an average of 92 %, with the majority of them (75 %) showing values higher than 90 %. These data confirm the high quality of the banked seed lots and their potentiality for use in plant propagation activities. Godefroid et al. (2010), in a study on seed germination and capacity and viability of threatened wild species stored at the National Botanic Garden of Belgium Seed Bank, found that seed viability of the 250 tested species reached on average 79 %. However, while viability tests of this study were carried out at the beginning of the storage (after one month; Terry et al. 2003), the results of Godefroid et al. (2010) refers to seed lots stored up to 26 years. As reported by the same authors, some species may have declined in seed viability during storage because they are short lived. This has been experimentally confirmed by Probert et al. (2009), who showed that longevity is related to seed structure and the climate of the area from where they were collected. Species with endospermic seeds appear to be typically short lived, and seeds from species originating in cool, wet environments are likely to have shorter lifespans than those from warm, dry environments (Probert et al. 2009). Therefore, further studies with controlled ageing tests (Newton et al. 2014) should be carried out, considering that all the bankable most useful plant families of the Valley, except Leguminosae, are constituted by species with endospermic seeds (Fig. 4).

Fig. 4

Key issues identified for the main phases of seed conservation and propagation of useful plants in Mexico. For each issues, recommendations and families affected are also summarized

Difficult seed collections

Alternative conservation measures should be considered for species producing few filled seeds (see those identified in this study in Table 1), because seed collection efforts made in the field did not produce a seed lot representative of the genetic diversity of the original population (Fig. 4). This was the case for Gomprena serrata (Amaranthaceae) and Gymnolaena oaxacana (Compositae), whose percentage of filled seeds was less than 20 %. Compositae have been listed among the families producing high percentages of empty seeds (ENSCONET 2009) and for Mexican species of this family, as well as for species of other families, this phenomenon can be related to and emphasized by the lack of water availability during seed development. When seed quality is very poor, complementary ex situ conservation measures, such as in vitro propagation, should be applied (Pence 2013).

For the other species with low seed quality identified in this study (see Table 1), conventional seed banking can still be suggested (Fig. 4), although seed collections in the field should be carried out with extra care (Way 2003). In particular, production of parthenocarpic empty fruits has been reported for Bursera morelensis (Ramos-Ordoñez et al. 2008), one of the most useful species of the Valley (i.e. used for fodder, firewood, wood and construction material, living fences, resins/latex, soil control, colorant; Lira et al. 2009a) and other Bursera species (Ramos-Ordoñez et al. 2012). Seeded and parthenocarpic fruits can be separated in the field at maturity by the presence of dehiscence, which is complete in seeded and partial in the parthenocarpic ones (Ramos-Ordoñez et al. 2008). Damaged seeds in a seedlot can occur due to attack by insects or microbial pathogens at different stages in the seed life-cycle (Way 2003). Leguminosae, in particular Acacia and Mimosa species, are among the taxa for which damage level exceeded the 50 % of banked accessions (Way 2003) as assessed in this study for A. compacta and Prosopis laevigata. It is very difficult to distinguish in the field between viable and infested seeds on Leguminosae and the loss of viable seeds should be compensated by extra seed collecting (Way 2003).

The germination and subsequent cut tests carried out on the stored seed lots identified three species with low seed viability (<50 %), although seeds appeared filled by X-ray analysis. These species were Actinocheita filicina (Anacardiaceae), Jatropha neopauciflora (Euphorbiaceae) and Heliocarpus terebinthinaceaus (Malvaceae). All these species can be found in narrow populations with few individuals and therefore, the low seed viability detected could be related to inbreeding (Ågren 1996; Fischer and Matthies 1998) or pollination related problems (Fischer and Matthies 1998; Jacquemyn et al. 2002), although this should be confirmed by further studies. In addition, seeds of J. neopauciflora were collected before the right time of maturation because ripe seeds are available in the field only for a short period, due to their slow development and those of H. terebinthinaceaus are affected by high percentages of predation by insects on the plant.

Seed dormancy as an issue for plant propagation

The different seed processing and germination protocols used in the two institutions in some cases led to different germination results, highlighting the importance of published information on seed germination of wild native species (Godefroid et al. 2010; Hay and Probert 2013; Baskin and Baskin 2014). It should also be taken into account that due to facility constraints at the Fes-I UNAM Seed Bank, only one germination condition could be tested. In this study it was possible to confirm the presence of seed dormancy for four species (see Table 2): Actinocheita filicina (Anacardiaceae), Bursera submoniliformis (Burseraceae), Karwinskia mollis (Rhamnaceae) and Lippia graveolens (Verbenaceae), with limited information on seed germination being available in the literature for seed germination of these species (Fig. 4).

Fruits of Bursera sp. are dispersed through endozoochory which means that the seeds are protected against physical and chemical damage by hard layers (Ramos-Ordoñez et al. 2012). This woody endocarp could lead to physical (PY) or physiological (PD) seed dormancy depending on its permeability to water, whether it allows seed imbibition or not (Ramos-Ordoñez et al. 2012). Seeds of many Burseraceae are reported to have PD or to be non dormant (Baskin and Baskin 2014). Limited information is available in the literature on seed germination requirements of Lippia species (but see Galíndez et al. 2016) and most of the study took a common garden approach, with seeds sown in the soil and incubated in nursery conditions (e.g., Mata-González and Meléndez-González 2005; Alui Konan et al. 2013).

For all these four species, further studies using freshly collected seeds, with a factorial experimental approach under laboratory controlled conditions, should be carried out in order to identify the best treatments and incubation conditions for seed dormancy breaking and germination (Baskin et al. 2006). Alternatively, as dormancy level is likely to change during cold storage, and the conditions required for germination become less specific (Probert 2000), the effect of storage time on seed germination should be considered and assessed, if using stored seed lots instead of freshly collected seeds, in seed dormancy studies (i.e. Vandelook et al. 2012; Mattana et al. 2014).

Useful species whose plant propagation by seed is not affected by dormancy

A total of 18 species with a non dormant status were identified (see Table 3). Among them, Acacia farnesiana, Amphipteryngium adstringens and Fouquieria formosa are reported by Lira et al. (2009a) as being most used by the local communities of the Valley. However, A. adstringens was identified in this study as one of the species with a low production of viable seeds and therefore the propagation by seed of this species is constrained by seed availability.

Interestingly, the majority of these species are woody or tree species, suggesting that they could be used to support reforestation programmes with useful indigenous species, as aimed for by the UPP (Ulian et al. 2016) and confirmed by the successful propagation of five of these species through the project (see Table 3). In addition, half of these species are Leguminosae which have been reported to act as “nurse plants” (e.g. Caesalipinia melanadenia, Senna wislizeni, Parkinsonia praecox, Prosopis laevigata; Valiente-Banuet et al. 1991; Morello-Calles and Casas 2010) and “resource islands” (e.g. Mimosa luisana; Camargo-Ricalde et al. 2002), for endangered cactus species of the Tehuacán–Cuicatlan Valley, such as the globose Mammillaria carnea, M. haagena and Corypantha pallida (Mandujano et al. 2002), Myrtillocactus geometrizans, Neobuxbaumia tetetzo and Opuntia pilifera (Garcia-Chávez et al. 2014) and Stenocereus stellatus (Álvarez-Espino et al. 2014), adding ecological and conservation values to their use in restoration programmes. However, it should be taken into account that seed germination is only one of the steps in the plant life cycle and other issues could be detected in seedling establishment and survival.

Seed banking and germination studies as a support to the preservation of the traditional knowledge

Knowledge on the use of plants is disappearing faster than the plants themselves (Alves and Rosa 2007). Therefore, conservation of useful plants should not be limited to the preservation of their genetic resources, but it should include the cataloguing and preservation for future generations of their traditional uses. Through the UPP, information on plant and plant products uses associated to the species stored in the seed banks have been gathered and managed through a dedicated database (Ulian et al. 2016). The uses of the ethnoflora of the Tehuacán–Cuicatlan Valley have been well investigated and documented in the past (e.g. Casas et al. 2001; Lira et al. 2009a). All the main categories of uses documented for the Valley (Lira et al. 2009a) are represented in the seed collections carried out through the UPP. Therefore, seed banking of wild useful species contributed to the preservation of the traditional knowledge of these rural communities by: (1) ensuring a back up of the genetic resources of wild useful plants; (2) providing information on their germination protocols; and (3) documenting and cataloguing the associated traditional knowledge on their uses, which represents an additional challenge in respect to the conventional ex situ conservation of either wild species or crop varieties.


The conservation in seed banks carried out through the UPP, contributed to delivering the GSPC Target 9 for the conservation of “genetic diversity of crops including their wild relatives and other socio-economically valuable plant species, while respecting, preserving and maintaining associated indigenous and local knowledge” ( and Aichi Biodiversity Target 18 for the respect of “the traditional knowledge, innovations and practices of indigenous and local communities relevant for the conservation and sustainable use of biodiversity, and their customary use of biological resources” ( in Mexico. In addition, these results contribute to the achievement of the Target 2.5 of the United Nations’ Sustainable Development Goals: “By 2020, maintain the genetic diversity of seeds, cultivated plants and farmed and domesticated animals and their related wild species, including through soundly managed and diversified seed and plant banks at the national, regional and international levels, and promote access to and fair and equitable sharing of benefits arising from the utilization of genetic resources and associated traditional knowledge, as internationally agreed” ( Moreover, the stored species may represent sources of new genetic diversity and, as for the crop wild relatives, potentially be available for plant breeding experiments, contributing a wide range of beneficial agronomic and nutritional traits (Castañeda-Álvarez et al. 2016).

The germination experiments carried out for the stored species allowed the identification of: (1) species for which more in depth studies on seed dormancy and germination are needed before considering their propagation by seed at a large scale; (2) species whose germination protocols and seed lot availability may already enhance their sustainable use through plant propagation by seed.

This study also confirmed that conventional seed banking represents an effective technique for ex situ conservation of useful wild plant species in Mexico and may complement their in situ conservation as well as the sustainable management of small scale agriculture (Blanckaert et al. 2007) and traditional homegardens (Blanckaert et al. 2004) in the preservation of plant diversity of the Biosphere Reserve of the Tehuacán–Cuicatlán Valley.


  1. Ågren J (1996) Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum salicaria. Ecology 77:1779–1790

    Article  Google Scholar 

  2. Alui Konan A, Ballo Koffi C, Yapi A, Kouadio Konan-Kan H, Kouadio Koffi P, Touré N, N’Guessan Kouamé A, Kwadjo Koffi E, Yao-Kouamé A (2013) Improvement tests on the germination in Lippia multiflora: influence of some factors related to soil on germination and seedling development. Asian J Agric Rural Dev 3(1):18–29

    Google Scholar 

  3. Álvarez-Espino R, Godínez-Álvarez H, De la Torre-Almaráz R (2014) Seed banking in the columnar cactus Steneocereus stellatus: distribution, density and longevity of seeds. Seed Sci Res 24(4):315–320

    Article  Google Scholar 

  4. Alves RRN, Rosa IML (2007) Biodiversity, traditional medicine and public health: where do they meet? J Ethnobiol Ethnomed 3:14

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baskin CC, Baskin JM (2014) Seeds. Ecology, biogeography, and evolution of dormancy and germination, 2nd edn. Academic Press, San Diego

    Google Scholar 

  6. Baskin CC, Thompson K, Baskin JM (2006) Mistakes in germination ecology and how to avoid them. Seed Sci Res 16:165–168

    Google Scholar 

  7. Blanckaert I, Swennen RL, Paredes Flores M, Rosas López R, Lira Saade R (2004) Floristic composition, plant uses and management prctices in homegardens of San Rafael Coxcatlán, Valley of Thuacán–Cuicatlán, Mexico. J Arid Environ 57:39–62

    Article  Google Scholar 

  8. Blanckaert I, Vancraeynest K, Swennen RL, Espinosa-García FJ, Piñero D, Lira-Saade R (2007) Non-crop resources and the role of indigenous knowledge in semi-arid production of Mexico. Agric Ecosyst Environ 119:39–48

    Article  Google Scholar 

  9. Caballero J, Casas A, Cortés L, Mapes C (1998) Patrones en el conocimiento, uso y manejo de plantas en pueblos de México. Estudios Atacameños 16:1–15

    Google Scholar 

  10. Camargo-Ricalde SL, Dhillion Shivcharn S, Grether R (2002) Community structure of endemic Mimosa species and environmental heterogeneity in a semi-arid Mexican valley. J Veg Sci 13:693–704

    Google Scholar 

  11. Casas A, Viveros JL, Caballero J (1994) Etnobotánica Mixteca: Sociedad, recursos naturales y subsistencia en la Montaña de Guerrero. Consejo Nacional Para la Cultura y las Artes/Instituto Nacional Indigenista, Mexico City

    Google Scholar 

  12. Casas A, Valiente-Banuet A, Viveros JL, Caballero J, Cortés L, Dávila P, Lira R, Rodríguez-Arévalo I (2001) Plant resources of the Tehuacán–Cuicatlán Valley, México. Econ Bot 55:129–166

    Article  Google Scholar 

  13. Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Müller JV, Ramirez Villegas J, Sosa CC, Struik PC, Vincent H, Toll J (2016) Global conservation priorities for crop wild relatives. Nat Plants. doi:10.1038/nplants.2016.22

    PubMed  Google Scholar 

  14. CBD (2002) Global strategy for plant conservation. The Secretariat of the Convention on Biological Diversity, Montreal

    Google Scholar 

  15. Cook FEM (1995) Economic botany data collection standard. Royal Botanic Gardens, Kew

    Google Scholar 

  16. Dávila P, Arizmendi MC, Valiente-Banuet A, Villaseñor JL, Casas A, Lira R (2002) Biological diversity in the Tehuacán–Cuicatlán Valley, Mexico. Biodivers Conserv 11:421–442

    Article  Google Scholar 

  17. ENSCONET (2009) ENSCONET seed collecting manual for wild species. Accessed 2 Aug 2015

  18. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge

    Google Scholar 

  19. Fischer M, Matthies D (1998) Effects of population size on performance in the rare plant Gentianella germanica. J Ecol 86:195–203

    Article  Google Scholar 

  20. Galíndez G, Seal C, Daws MI, Lindow L, Ortega-Baes P, Pritchard HW (2016) Alternating temperature combined with darkness resets base temperature for germination (Tb) in photoblastic seeds of Lippia and Aloysia (Verbenaceae). Plant Biol. doi: 10.1111/plb.12449

    PubMed  Google Scholar 

  21. Garcia-Chávez JH, Montaña C, Perroni Y, Sosa VJ, García-Licona JB (2014) The relative importance of solar radiation and soil origin in cactus seedling survivorship at two spatial scales: plant association and microhabitat. J Veg Sci 25:668–680

    Article  Google Scholar 

  22. Godefroid S, Van de Vyver A, Vanderborght T (2010) Germination capacity and viability of threatened species collections in seed banks. Biodivers Conserv 19:1365–1383

    Article  Google Scholar 

  23. Gonzalez-Benito ME, Perez-Ruiz C (1992) Cryopreservation of Quercus faginea embryonic axes. Cryobiology 29(6):685–690

    Article  Google Scholar 

  24. Hay FR, Probert RJ (2013) Advances in seed conservation of wild plant species: a review of recent research. Conserv Physiol. doi:10.1093/conphys/cot030

    PubMed  PubMed Central  Google Scholar 

  25. Hernández-Xolocotzi E (1993) Aspects of plant domestication in Mexico: a personal view. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) Biological diversity of Mexico, origins and distribution. Oxford University Press, New York, pp 733–753

    Google Scholar 

  26. Hong TD, Linington S, Ellis RH (1998) Compendium of information on seed storage behaviour, vol I. Royal Botanic Gardens, Kew

    Google Scholar 

  27. Iriondo JM, Pérez C (1999) Propagation from seeds and seed preservation. In: Bowes BG (ed) A colour atlas of plant propagation and conservation. Manson Publishing, London, pp 46–57

    Google Scholar 

  28. IUCN (2015) The IUCN red list of threatened species. Version 2014.3. Downloaded on 13 Feb 2015

  29. Jacquemyn H, Brys R, Hermy M (2002) Patch occupancy, population size and reproductive success of a forest herb (Primula elatior) in a fragmented landscape. Oecologia 130:617–625

    Article  PubMed  Google Scholar 

  30. Jankowska-Blaszczuk M, Daws MI (2007) Impact of red: far red ratios on germination of temperate forest herbs in relation to shade tolerance, seed mass and persistence in the soil. Funct Ecol 21:1055–1062

    Article  Google Scholar 

  31. León-Lobos P, Way M, Davila Aranda P, Lima-Junior M (2012) The role of ex situ seed banks in the conservation of plant diversity and in ecological restoration in Latin America. Plant Ecol Divers 5(2):245–258

    Article  Google Scholar 

  32. Li D-Z, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14:614–621

    CAS  Article  PubMed  Google Scholar 

  33. Linington SH (2003) The Design of Seed Banks. In: Smith RD, Dickie JB, Linington SH, Pritchard HW, Probert RJ (eds) Seed conservation: turning science into practice. Royal Botanic Gardens, Kew, pp 591–636

    Google Scholar 

  34. Lira R, Casas A, Rosas-López R, Paredes-Flores M, Pérez-Negrón E, Rangel-Landa S, Solís L, Torres I, Dávila P (2009a) Traditional knowledge and useful plant richness in the Tehuacán–Cuicatlán Valley, Mexico. Econ Bot 63(3):271–287

    Article  Google Scholar 

  35. Lira R, Téllez O, Dávila P (2009b) The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Genet Resour Crop Evol 56:691–703

    Article  Google Scholar 

  36. MacNeish RS (1992) The origins of agriculture and settled life. University of Oklahoma Press, Norman

    Google Scholar 

  37. Mandujano MC, Flores-Martínez A, Golubov J, Excurra E (2002) Spatial distribution of three globose cacti in relation to different nurse-plant canopies and bare areas. Southwest Nat 47(2):162–168

    Article  Google Scholar 

  38. Mata-González R, Meléndez-González R (2005) Growth characteristics of Mexican oregano (Lippia berlandieri Schauer) under salt stress. Southwest Nat 50(1):1–6

    Article  Google Scholar 

  39. Mattana E, Stuppy WH, Fraser R, Waller J, Pritchard HW (2014) Dependency of seed dormancy types on embryo traits and environmental conditions in Ribes species. Plant Biol 16:740–747

    CAS  Article  PubMed  Google Scholar 

  40. Medina J (2000) Determinación del vigor y el estado reproductivo de Stenocereus stellatus (Cactaceae) a lo largo de una cronosecuencia edáfica en un abanico aluvial en Coxcatlán, Valle de Tehuacán, Tésis Profesional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México D.F., México

  41. Menges ES, Guerrant EO Jr, Hamzé S (2004) Effects of seed collection on the extinction risk of perennials plants. In: Guerrant EO Jr, Havens K, Maunder M (eds) Ex situ plant conservation. Island Press, London, Supporting species survival in the wild, pp 305–324

    Google Scholar 

  42. Morello-Calles AI, Casas A (2010) Agroforestry systems: restoration of semiarid zones in the Tehuacán–Cuicatlán Valley, Central Mexico. Ecol Restor 28(3):361–368

    Article  Google Scholar 

  43. Newton R, Hay F, Probert RJ (2014) Protocol for comparative seed longevity testing. In: Technical information sheet 01. Board of Trustees of the Royal Botanic Gardens, Kew, London

  44. Offord CA, Mckensy ML, Cuneo PV (2004) Critical review of threatened species collections in the NSW Seedbank: implications for ex situ conservation of biodiversity. Pac Conserv Biol 10:221–236

    Article  Google Scholar 

  45. Ordõnez-Salanueva CA, Seal CE, Pritchard HW, Orozco-Segovia A, Canales-Martínez M, Flores-Ortiz CM (2015) Cardinal temperatures and thermal time in Polaskia Backeb (Cactaceae) species: effect of projected soil temperature increase and nurse interaction on germination timing. J Arid Environ 115:73–80

    Article  Google Scholar 

  46. Padulosi S, Hodgkin T, Williams JT, Haq N (2002) Underutilized crops: trends, challenges and opportunities in the 21st century. In: Engels JMM, Rao VR, Jackson M (eds) Managing plant genetic diversity. CAB International, Wallingford, pp 323–338

    Google Scholar 

  47. Pardo J (2001) Diagnóstico de las plantas silvestres, arvenses y ruderales que son empleadas como alimentos por habitantes de cuatro localidades del Valle de Tehuacán–Cuicatlán. Tésis Profesional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México D.F., México

  48. Pence VC (2013) In vitro methods and the challenge of exceptional species for target 8 of the global strategy for plant conservation. Ann Mo Bot Gard 99(2):214–220

    Article  Google Scholar 

  49. Pérez-García F, González-Benito ME, Gómez-Campo C (2007) High viability recored in ultra-dry seeds of 37 species of Brassicaceae after almost 40 years of storage. Seed Sci Technol 35:143–153

    Article  Google Scholar 

  50. Pimm SL, Russel GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350

    CAS  Article  PubMed  Google Scholar 

  51. Probert RJ (2000) The role of temperature in the regulation of seed dormancy and germination. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities, 2nd edn. CAB International, Wallingford, pp 261–292

    Google Scholar 

  52. Probert RJ, Daws MI, Hay FR (2009) Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Ann Bot 104:57–69

    Article  PubMed  PubMed Central  Google Scholar 

  53. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  54. Ramos-Ordoñez MF, Márquez-Guzman J, del Coro Arizmendi M (2008) Parthenocarpy and seed predation by insects in Bursera morelensis. Ann Bot 102:713–722

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ramos-Ordoñez MF, del Coro Arizmendi M, Márquez-Guzmán J (2012) The fruit of Bursera: structure, maturation and parthenocarpy. AoB Plants pls027d. doi:10.193/aobpla/pls027

    Google Scholar 

  56. Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1:499–514

    Google Scholar 

  57. Roberts EH (1988) Temperature and seed germination. In: Long SP, Woodward FI (eds) Plants and temperature. Symposia of the society of experimental biology. Company of Biologists, Cambridge, pp 109–132

    Google Scholar 

  58. Rosas R (2003) Estudios Etnobotánicos de San Rafael-Coxcatlán. Tésis Profesional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México D.F., México

  59. Royal Botanic Gardens Kew (2014) Seed information database (SID). Version 7.1. Accessed 03 Apr 2014

  60. Rzedowski J (1993) Diversity and origins of the phanerogamic flora of Mexico. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) Biological diversity of Mexico, origins and distribution. Oxford University Press, New York, pp 129–144

    Google Scholar 

  61. Terry J, Probert RJ, Linington SH (2003) Processing and maintenance of the millennium seed bank collections. In: Smith RD, Dickie JB, Linington SH, Pritchard HW, Probert RJ (eds) Seed Conservation: turning science into practice. Royal Botanic Gardens, Kew, pp 307–325

    Google Scholar 

  62. The Plant List (2013) Version 1.1. Published on the internet; Accessed 3 Apr 2014

  63. Toledo VM, Rzedowski J, Villalobos J (1997) Regional overview: Middle America. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant diversity. A guide and strategy for their conservation, vol 3: the Americas, vol. IUCN Publications Unit, Cambridge, pp 97–124

    Google Scholar 

  64. Ulian T, Sacande M, Hudson A, Mattana E (2016) Conservation of indigenous plants to support community livelihoods: the MGU—Useful Plants Project. J Environ Plann Man (in press). doi:10.1080/09640568.2016.1166101

  65. Valiente-Banuet A, Bolongaro-Crevenna A, Briones O, Excurra E, Rosas M, Nuñez H, Barnard G, Vazquez E (1991) Spatial realtionships between cacti and nurse shrubs in a semi-arid environment in central Mexico. J Veg Sci 2:15–20

    Article  Google Scholar 

  66. Vandelook F, Janssens SB, Probert RJ (2012) Relative embryo length as an adaptation to habitat and life cycle in Apiaceae. New Phytol 195:479–487

    Article  PubMed  Google Scholar 

  67. Way MJ (2003) Collecting seeds from non-domesticated plants for long-term conservation. In: Smith RD, Dickie JB, Linington SH, Pritchard HW, Probert RJ (eds) Seed conservation: turning science into practice. Royal Botanic Gardens, Kew, pp 163–201

    Google Scholar 

  68. Westengen OT, Jeppson S, Guarino L (2013) Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status. PLoS One 8(5):e64146

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Xia K, Daws MI, Stuppy W, Zhou Z-K, Pritchard HW (2012) Rates of water loss and uptake in recalcitrant fruits of quercus species are determined by pericarp anatomy. PLoS One 7(10):e47368

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


This work has been funded by MGU, a philanthropist based in Spain, as part of “The Project MGU-the Useful Plants Project”, managed by the Royal Botanic Gardens, Kew. The authors acknowledge the support of the local communities involved in the project and their authorities. Kenwin Liu (RBG Kew) helped with the analysis on the seed desiccation tolerance of the species listed in the Seed Information Database, SID. They also acknowledge the help of Hector Cervantes and Armando Ponce and the field technician Martin Lopez Carrera for seed collecting and all the staff and students of the Fes-I UNAM and MSB for seed processing and testing. Oswaldo Tellez (UNAM) and Gabriele Bradamante (RBG Kew) helped with data.

Author information



Corresponding author

Correspondence to Efisio Mattana.

Ethics declarations

Conflict of interest

The authors declare that they have not conflict of interest.


Appendix 1: The inventory of bankable useful plants of the Tehuacán–Cuicatlan Valley (from Lira et al. 2009a, modified)

Family Genus Specific epithet Species authors Infraspecific rank and epithet Infraspecific taxon Authors
Acanthaceae Anisacanthus gonzalezii Greenm.   
Acanthaceae Carlowrightia neesiana (Schauer ex Nees) T.F. Daniel   
Acanthaceae Carlowrightia pringlei B.L. Rob. et Greenm.   
Acanthaceae Elytraria imbricata (Vahl) Pers.   
Acanthaceae Holographis velutifolia (House) T.F. Daniel   
Acanthaceae Justicia brandegeeana Wassh. et L.B. Sm.   
Acanthaceae Justicia candicans (Nees) L.D. Benson   
Acanthaceae Justicia gonzalezii (Greenm.) Henrickson et Hiriart   
Acanthaceae Justicia spicigera Schltdl.   
Acanthaceae Justicia ramosa (Oerst.) V.A.W. Graham   
Acanthaceae Ruellia hirsutoglandulosa (Oerst.) Hemsl.   
Acanthaceae Ruellia lactea Cav.   
Acanthaceae Tetramerium nervosum Nees   
Acanthaceae Thunbergia alata Bojer ex Sims   
Aizoaceae Mesembryanthemum cordifolium L.f.   
Alstroemeriaceae Bomarea edulis (Tussac) Herb.   
Alstroemeriaceae Bomarea hirtella (Kunth) Herb.   
Amaranthaceae Alternanthera obovata (M. Martens et Galeotti) Millsp.   
Amaranthaceae Alternanthera pungens Kunth   
Amaranthaceae Amaranthus hybridus L.   
Amaranthaceae Amaranthus hypochondriacus L.   
Amaranthaceae Atriplex pueblensis Standl.   
Amaranthaceae Beta vulgaris L.   
Amaranthaceae Chamissoa altissima (Jacq.) Kunth   
Amaranthaceae Chenopodium ambrosioides L.   
Amaranthaceae Chenopodium berlandieri Moq.   
Amaranthaceae Chenopodium incisum Poir.   
Amaranthaceae Chenopodium murale L.   
Amaranthaceae Gomphrena serrata L.   
Amaranthaceae Iresine calea (Ibantz) Standl.   
Amaranthaceae Iresine discolor Greenm.   
Amaranthaceae Iresine pringlei S. Watson   
Amaranthaceae Iresine schaffneri S. Watson   
Amaryllidaceae Allium cepa L.   
Amaryllidaceae Allium glandulosum Link et Otto   
Amaryllidaceae Allium sativum L.   
Amaryllidaceae Allium longifolium (Kunth) Spreng.   
Amaryllidaceae Hymenocallis harrisiana Herb.   
Anacardiaceae Actinocheita filicina (DC.) F.A. Barkley   
Anacardiaceae Amphipterygium adstringens (Schltdl.) Standl.   
Anacardiaceae Cyrtocarpa procera Kunth   
Anacardiaceae Pseudosmodingium multifolium Rose   
Anacardiaceae Rhus chondroloma Standl.   
Anacardiaceae Rhus standleyi F.A. Barkley   
Anacardiaceae Rhus virens Lindh. ex A. Gray   
Anacardiaceae Schinus molle L.   
Anacardiaceae Spondias mombin L.   
Annonaceae Annona cherimola Mill.   
Annonaceae Annona muricata L.   
Annonaceae Annona reticulata L.   
Apiaceae Coriandrum sativum L.   
Apiaceae Eryngium bonplandii F. Delaroche   
Apiaceae Eryngium pectinatum C. Presl ex DC.   
Apiaceae Foeniculum vulgare Mill.   
Apiaceae Petroselinum crispum (Mill.) Fuss   
Apocynaceae Asclepias curassavica L.   
Apocynaceae Asclepias linaria Cav.   
Apocynaceae Cascabela ovata (Cav.) Lippold   
Apocynaceae Cascabela thevetia (L.) Lippold   
Apocynaceae Cascabela thevetioides (Kunth) Lippold   
Apocynaceae Catharanthus roseus (L.) G. Don   
Apocynaceae Cryptostegia madagascariensis Bojer ex Decne.   
Apocynaceae Funastrum pannosum (Hemsl.) Schltr.   
Apocynaceae Gonolobus pectinatus Brandegee   
Apocynaceae Marsdenia parvifolia Brandegee   
Apocynaceae Matelea crenata (Vail) Woodson   
Apocynaceae Matelea trachyantha (Greenm.) W.D. Stevens   
Apocynaceae Nerium oleander L.   
Apocynaceae Orbea variegata (L.) Haw.   
Apocynaceae Plumeria rubra L.   
Apocynaceae Rauvolfia tetraphylla L.   
Apocynaceae Sarcostemma elegans Decne.   
Apocynaceae Vallesia glabra (Cav.) Link   
Araceae Alocasia macrorrhizos (L.) G. Don   
Araceae Anthurium andraeanum Linden ex André   
Araceae Anthurium crassinervium (Jacq.) Schott   
Araceae Caladium bicolor (Aiton) Vent.   
Araceae Dieffenbachia picta Schott   
Araceae Dieffenbachia seguine (Jacq.) Schott   
Araceae Epipremnum aureum (Linden et André) G.S. Bunting   
Araceae Monstera adansonii Schott   
Araceae Monstera deliciosa Liebm.   
Araceae Philodendron pinnatifidum (Jacq.) Schott   
Araceae Xanthosoma robustum Schott   
Araceae Zantedeschia aethiopica (L.) Spreng.   
Araliaceae Aralia humilis Cav.   
Araliaceae Hedera helix L.   
Araliaceae Polyscias balfouriana L.H. Bailey   
Arecaceae Brahea dulcis (Kunth) Mart.   
Arecaceae Brahea calcarea Liebm.   
Arecaceae Phoenix dactylifera L.   
Asparagaceae Agave americana L.   
Asparagaceae Agave atrovirens Karw. ex Salm-Dyck   
Asparagaceae Agave karwinskii Zucc.   
Asparagaceae Agave kerchovei Lem.   
Asparagaceae Agave macroacantha Zucc.   
Asparagaceae Agave marmorata Roezl   
Asparagaceae Agave peacockii Croucher   
Asparagaceae Agave potatorum Zucc.   
Asparagaceae Agave salmiana Otto ex Salm-Dyck   
Asparagaceae Agave sisalana Perrine   
Asparagaceae Agave stricta Salm-Dyck   
Asparagaceae Agave triangularis Jacobi   
Asparagaceae Beaucarnea gracilis Lem.   
Asparagaceae Chlorophytum comosum (Thunb.) Jacques   
Asparagaceae Cordyline stricta (Sims) Endl.   
Asparagaceae Dasylirion serratifolium (Karw. ex Schult. et Schult.f.) Zucc.   
Asparagaceae Dracaena braunii Engl.   
Asparagaceae Echeandia conzattii Cruden   
Asparagaceae Furcraea tuberosa (Mill.) Aiton   
Asparagaceae Nolina longifolia (Karw. ex Schult. et Schult.f.) Hemsl.   
Asparagaceae Polyanthes tuberosa L.   
Asparagaceae Sansevieria trifasciata Prain   
Asparagaceae Sansevieria zeylanica Roxb.   
Asparagaceae Yucca periculosa Baker   
Balsaminaceae Impatiens balsamina L.   
Begoniaceae Begonia gracilis Kunth   
Betulaceae Alnus acuminata Kunth   
Betulaceae Alnus jorullensis Kunth   
Bignoniaceae Astianthus viminalis (Kunth) Baill.   
Bignoniaceae Jacaranda mimosifolia D. Don   
Bignoniaceae Parmentiera aculeata (Kunth) Seem.   
Bignoniaceae Podranea ricasoliana (Tanfani) Sprague   
Bignoniaceae Tecoma stans (L.) Juss. ex Kunth   
Boraginaceae Antiphytum heliotropioides A.DC.   
Boraginaceae Antiphytum paniculatum I.M. Johnst.   
Boraginaceae Borago officinalis L.   
Boraginaceae Cordia curassavica (Jacq.) Roem. et Schult.   
Boraginaceae Cordia oaxacana A. DC.   
Boraginaceae Cordia spinescens L.   
Boraginaceae Cordia stellata Greenm.   
Boraginaceae Cordia alba (Jacq.) Roem. et Schult.   
Boraginaceae Ehretia latifolia Loisel. ex A. DC.   
Boraginaceae Heliotropium angiospermum Murray   
Boraginaceae Heliotropium curassavicum L.   
Boraginaceae Heliotropium procumbens Mill.   
Boraginaceae Nama dichotoma (Ruiz et Pav.) Choisy   
Boraginaceae Tournefortia mutabilis Vent.   
Boraginaceae Tournefortia volubilis L.   
Boraginaceae Wigandia urens (Ruiz et Pav.) Kunth   
Brassicaceae Brassica rapa L.   
Brassicaceae Brassica oleracea L.   
Brassicaceae Capsella bursa-pastoris (L.) Medik.   
Brassicaceae Descurainia virletii (E. Fourn.) O.E. Schulz   
Brassicaceae Eruca sativa Mill.   
Brassicaceae Lepidium virginicum L.   
Brassicaceae Matthiola incana (L.) R. Br.   
Brassicaceae Nasturtium officinale R. Br.   
Brassicaceae Raphanus sativus L.   
Bromeliaceae Ananas comosus (L.) Merr.   
Bromeliaceae Catopsis compacta Mez   
Bromeliaceae Hechtia bracteata Mez   
Bromeliaceae Hechtia confusa L.B. Sm.   
Bromeliaceae Hechtia conzattiana L.B. Sm.   
Bromeliaceae Hechtia fragilis Burt-Utley et Utley   
Bromeliaceae Hechtia galeottii Mez   
Bromeliaceae Hechtia glomerata Zucc.   
Bromeliaceae Hechtia lyman-smithii Burt-Utley et Utley   
Bromeliaceae Hechtia podantha Mez   
Bromeliaceae Hechtia pringlei B.L. Rob. et Greenm.   
Bromeliaceae Hechtia roseana L.B. Sm.   
Bromeliaceae Hechtia sphaeroblasta B.L. Rob.   
Bromeliaceae Hechtia liebmannii Mez   
Bromeliaceae Tillandsia concolor L.B. Sm.   
Bromeliaceae Tillandsia dasyliriifolia Baker   
Bromeliaceae Tillandsia grandis Schltdl.   
Bromeliaceae Tillandsia plumosa Baker   
Bromeliaceae Tillandsia pueblensis L.B. Sm.   
Bromeliaceae Tillandsia recurvata (Gaudich.) Baker   
Bromeliaceae Tillandsia usneoides (L.) L.   
Burseraceae Bursera aptera Ramírez   
Burseraceae Bursera arida (Rose) Standl.   
Burseraceae Bursera biflora (Rose) Standl.   
Burseraceae Bursera bipinnata (Moc. et Sessé ex DC.) Engl.   
Burseraceae Bursera cinerea Engl.   
Burseraceae Bursera copallifera (Sessé et Moc. ex DC.) Bullock   
Burseraceae Bursera diversifolia Rose   
Burseraceae Bursera fagaroides (Kunth) Engl.   
Burseraceae Bursera galeottiana Engl.   
Burseraceae Bursera glabrifolia (Kunth) Engl.   
Burseraceae Bursera laxiflora S. Watson   
Burseraceae Bursera mirandae C.A. Toledo   
Burseraceae Bursera morelensis Ramírez   
Burseraceae Bursera schlechtendalii Engl.   
Burseraceae Bursera simaruba (L.) Sarg.   
Burseraceae Bursera submoniliformis Engl.   
Burseraceae Bursera linanoe (La Llave) Rzed., Calderón et Medina   
Cactaceae Acanthocereus subinermis Britton et Rose   
Cactaceae Cephalocereus columna-trajani (Karw. ex Pfeiff.) K. Schum.   
Cactaceae Coryphantha pallida Britton et Rose   
Cactaceae Coryphantha pycnacantha (Mart.) Lem.   
Cactaceae Disocactus flagelliformis (L.) Barthlott   
Cactaceae Echinocactus platyacanthus Link et Otto   
Cactaceae Echinocereus pulchellus (Mart.) K. Schum.   
Cactaceae Escontria chiotilla (A.A. Weber ex K. Schum.) Rose   
Cactaceae Ferocactus flavovirens (Scheidw.) Britton et Rose   
Cactaceae Ferocactus haematacanthus (Monv. ex Salm-Dyck) Bravo ex Backeb. et F.M. Knuth   
Cactaceae Ferocactus macrodiscus (Mart.) Britton et Rose   
Cactaceae Ferocactus recurvus (Mill.) Borg   
Cactaceae Ferocactus robustus (Karw. ex Pfeiff.) Britton et Rose   
Cactaceae Heliocereus elegantissimus Britton et Rose   
Cactaceae Heliocereus schrankii (Zucc. ex Seitz) Britton et Rose   
Cactaceae Hylocereus purpusii (Weing.) Britton et Rose   
Cactaceae Hylocereus undatus (Haw.) Britton et Rose   
Cactaceae Isolatocereus dumortieri (Scheidw.) Backeb.   
Cactaceae Mammillaria carnea Zucc. ex Pfeiff.   
Cactaceae Mammillaria haageana Pfeiff.   
Cactaceae Mammillaria sphacelata Mart.   
Cactaceae Myrtillocactus geometrizans (Mart. ex Pfeiff.) Console   
Cactaceae Myrtillocactus schenckii (J.A. Purpus) Britton et Rose   
Cactaceae Neobuxbaumia macrocephala (F.A.C. Weber ex K. Schum.) E.Y. Dawson   
Cactaceae Neobuxbaumia mezcalaensis Bravo   
Cactaceae Neobuxbaumia tetetzo (F.A.C. Weber ex K. Schum.) Backeb.   
Cactaceae Nopalea auberi (Pfeiff.) Salm-Dyck   
Cactaceae Nopalea cochenillifera (L.) Salm-Dyck   
Cactaceae Opuntia huajuapensis Bravo   
Cactaceae Opuntia hyptiacantha F.A.C. Weber   
Cactaceae Opuntia kleiniae DC.   
Cactaceae Opuntia lasiacantha Pfeiff.   
Cactaceae Opuntia pilifera F.A.C. Weber   
Cactaceae Opuntia pumila Rose   
Cactaceae Opuntia streptacantha Lem.   
Cactaceae Opuntia tomentosa Salm-Dyck   
Cactaceae Opuntia decumbens Salm-Dyck   
Cactaceae Opuntia depressa Rose   
Cactaceae Opuntia ficus-indica (L.) Mill.   
Cactaceae Opuntia imbricata (Haw.) DC.   
Cactaceae Pachycereus hollianus (F.A.C. Weber ex J.M. Coult.) Buxb.   
Cactaceae Pachycereus marginatus (DC.) Britton et Rose   
Cactaceae Pachycereus weberi (J.M. Coult.) Backeb.   
Cactaceae Pereskiopsis rotundifolia (DC.) Britton et Rose   
Cactaceae Pilosocereus chrysacanthus (F.A.C. Weber ex K. Schum.) Byles et G.D. Rowley   
Cactaceae Polaskia chende Gibson et Horak   
Cactaceae Polaskia chichipe (Gosselin) Backeb.   
Cactaceae Pseudomitrocereus fulviceps (F.A.C. Weber ex K. Schum.) Bravo et Buxb.   
Cactaceae Stenocereus griseus (Haw.) Buxb   
Cactaceae Stenocereus pruinosus (Otto ex Pfeiff.) Buxb.   
Cactaceae Stenocereus stellatus (Pfeiff.) Riccob.   
Cactaceae Stenocereus treleasei (Vaupel) Backeb.   
Campanulaceae Diastatea micrantha (Kunth) McVaugh   
Campanulaceae Lobelia berlandieri A.DC.   
Cannaceae Canna indica L.   
Capparaceae Forchhammeria macrocarpa Standl.   
Capparaceae Polanisia uniglandulosa (Cav.) DC.   
Capparaceae Quadrella incana (Kunth) Iltis et Cornejo   
Caprifoliaceae Sambucus mexicana C. Presl ex DC.   
Caprifoliaceae Vesalea floribunda M. Martens et Galeotti   
Caryophyllaceae Dianthus caryophyllus L.   
Caryophyllaceae Drymaria laxiflora Benth.   
Casuarinaceae Casuarina equisetifolia L.   
Celastraceae Pristimera celastroides (Kunth) A.C. Sm.   
Celastraceae Wimmeria microphylla Radlk.   
Celastraceae Wimmeria pubescens Radlk.   
Commelinaceae Callisia navicularis (Ortgies) D.R. Hunt   
Commelinaceae Commelina clavata C.B. Clarke   
Commelinaceae Commelina coelestis Willd.   
Commelinaceae Commelina erecta L.   
Commelinaceae Commelina tuberosa L.   
Commelinaceae Gibasis consobrina D.R. Hunt   
Commelinaceae Gibasis linearis (Benth.) Rohweder   
Commelinaceae Tradescantia crassifolia Cav.   
Commelinaceae Tradescantia sillamontana Matuda   
Commelinaceae Tradescantia zebrina Bosse   
Commelinaceae Tradescantia pallida (Rose) D.R. Hunt   
Commelinaceae Tripogandra purpurascens (Schauer) Handlos   
Compositae Acourtia lobulata (Bacig.) Reveal et R.M. King   
Compositae Acourtia scapiformis (Bacig.) B.L. Turner   
Compositae Ageratina espinosarum (A. Gray) R.M. King et H. Rob.   
Compositae Ageratina hebes (B.L. Rob.) R.M. King et H. Rob.   
Compositae Ageratina mairetiana (DC.) R.M. King et H. Rob.   
Compositae Ageratum tehuacanum R.M. King et H. Rob.   
Compositae Archibaccharis serratifolia (Kunth) S.F. Blake   
Compositae Artemisia absinthium L.   
Compositae Artemisia vulgaris L.   
Compositae Aster novi-belgii L.   
Compositae Aster subulatus (Michx.) Hort. ex Michx.   
Compositae Baccharis conferta Kunth   
Compositae Baccharis mexicana Cuatrec.   
Compositae Baccharis salicina Torr. et A. Gray   
Compositae Barkleyanthus salicifolius (Kunth) H. Rob. et Brettell   
Compositae Bidens bigelovii A. Gray   
Compositae Bidens bipinnata L.   
Compositae Bidens pilosa L.   
Compositae Brickellia scoparia (DC.) A. Gray   
Compositae Brickellia veronicifolia (Kunth) A. Gray   
Compositae Calea zacatechichi Schltdl.   
Compositae Calea oliveri B.L. Rob. et Greenm.   
Compositae Calendula officinalis L.   
Compositae Carminatia alvarezii Rzed. et Calderón   
Compositae Chaptalia nutans (L.) Polák   
Compositae Chrysactinia mexicana A. Gray   
Compositae Chrysanthemum indicum Thunb.   
Compositae Cirsium mexicanum DC.   
Compositae Conyza coronopifolia Kunth   
Compositae Cosmos bipinnatus Cav.   
Compositae Dahlia apiculata (Sherff) P.D. Sørensen   
Compositae Dahlia coccinea Cav.   
Compositae Dahlia merckii Lehm.   
Compositae Desmanthodium ovatum Benth.   
Compositae Dyssodia papposa (Vent.) Hitchc.   
Compositae Dyssodia tagetiflora Lag.   
Compositae Erigeron karvinskianus DC.   
Compositae Erigeron longipes DC.   
Compositae Erigeron bonariensis L.   
Compositae Erigeron canadensis L.   
Compositae Flaveria trinervia (Spreng.) C. Mohr   
Compositae Florestina simplicifolia B.L. Turner   
Compositae Galinsoga parviflora Cav.   
Compositae Gnaphalium attenuatum DC.   
Compositae Gnaphalium canescens DC.   
Compositae Gochnatia hypoleuca (DC.) A. Gray   
Compositae Grindelia inuloides Willd.   
Compositae Gymnolaena oaxacana (Greenm.) Rydb.   
Compositae Gymnosperma glutinosum (Spreng.) Less.   
Compositae Helenium mexicanum DC.   
Compositae Helianthus annuus L.   
Compositae Heterosperma pinnatum Cav.   
Compositae Heterotheca inuloides Cass.   
Compositae Laennecia sophiifolia (Kunth) G.L. Nesom   
Compositae Lagascea helianthifolia Kunth   
Compositae Launaea intybacea (Jacq.) Beauverd   
Compositae Matricaria chamomilla L.   
Compositae Melampodium divaricatum (Rich. ex Rich.) DC.   
Compositae Melampodium longifolium Cerv. ex Cav.   
Compositae Montanoa mollissima Brongn. ex Brongn.   
Compositae Montanoa tomentosa Cerv.   
Compositae Neurolaena lobata (L.) R.Br. ex Cass.   
Compositae Parthenium bipinnatifidum (Ortega) Rollins   
Compositae Parthenium hysterophorus Adans.   
Compositae Parthenium tomentosum DC.   
Compositae Perymenium discolor Sch.Bip.   
Compositae Perymenium mendezii DC.   
Compositae Philactis zinnioides Schrad.   
Compositae Pinaropappus roseus (Less.) Less.   
Compositae Piqueria trinervia Cav.   
Compositae Pluchea salicifolia (Mill.) S.F. Blake   
Compositae Podachaenium eminens (Lag.) Sch.Bip. ex Sch.Bip.   
Compositae Porophyllum linaria (Cav.) DC.   
Compositae Porophyllum punctatum (Mill.) S.F. Blake   
Compositae Porophyllum ruderale M. Gómez   
Compositae Porophyllum viridiflorum (Kunth) DC.   
Compositae Psacalium amplifolium (DC.) H. Rob. et Brettell   
Compositae Pseudelephantopus spicatus (B. Juss. ex Aubl.) Rohr ex C.F. Baker   
Compositae Sanvitalia fruticosa Hemsl.   
Compositae Sanvitalia procumbens Lam.   
Compositae Schkuhria pinnata Cabrera   
Compositae Senecio deppeanus Hemsl.   
Compositae Senecio salignus DC.   
Compositae Simsia lagascaeformis DC.   
Compositae Simsia sanguinea A. Gray   
Compositae Sonchus oleraceus (L.) L.   
Compositae Stevia lucida Lag.   
Compositae Stevia microchaeta Sch.Bip. ex Sch.Bip.   
Compositae Stevia origanoides Kunth   
Compositae Stevia serrata Cav.   
Compositae Steviopsis vigintiseta (DC.) R.M. King et H. Rob.   
Compositae Tagetes erecta L.   
Compositae Tagetes filifolia Lag.   
Compositae Tagetes lucida Cav.   
Compositae Tagetes micrantha Cav.   
Compositae Tanacetum parthenium (L.) Sch.Bip.   
Compositae Taraxacum campylodes G.E. Haglund   
Compositae Tithonia tubaeformis (Jacq.) Cass.   
Compositae Tridax coronopifolia (Kunth) Hemsl.   
Compositae Tridax luisana Brandegee   
Compositae Tridax mexicana A.M. Powell   
Compositae Trigonospermum melampodioides DC.   
Compositae Trixis pringlei B.L. Rob. et Greenm.   
Compositae Verbesina gracilipes B.L. Rob.   
Compositae Verbesina petrophila Brandegee   
Compositae Verbesina serrata Cav. var. pringlei (B.L. Rob.) B.L. Rob. et Greenm.
Compositae Verbesina virgata Cav.   
Compositae Vernonia karvinskiana DC.   
Compositae Viguiera cordata (Hook. et Arn.) D’Arcy   
Compositae Viguiera dentata (Cav.) Spreng.   
Compositae Viguiera grammatoglossa DC.   
Compositae Viguiera pinnatilobata (Sch.Bip.) S.F. Blake   
Compositae Viguiera purpusii Brandegee   
Compositae Zinnia peruviana (L.) L.   
Compositae Zinnia violacea Cav.   
Convolvulaceae Cuscuta corymbosa Ruiz et Pav.   
Convolvulaceae Dichondra sericea Sw.   
Convolvulaceae Ipomoea arborescens (Humb. et Bonpl. ex Willd.) G. Don   
Convolvulaceae Ipomoea batatas (L.) Lam.   
Convolvulaceae Ipomoea cholulensis Kunth   
Convolvulaceae Ipomoea coccinea L.   
Convolvulaceae Ipomoea conzattii Greenm.   
Convolvulaceae Ipomoea leptotoma Torr.   
Convolvulaceae Ipomoea murucoides Roem. et Schult.   
Convolvulaceae Ipomoea nil (L.) Roth   
Convolvulaceae Ipomoea pauciflora M. Martens et Galeotti   
Convolvulaceae Ipomoea purpurea (L.) Roth   
Convolvulaceae Ipomoea tricolor Cav.   
Convolvulaceae Jacquemontia smithii B.L. Rob. et Greenm.   
Convolvulaceae Turbina corymbosa (L.) Raf.   
Crassulaceae Bryophyllum pinnatum (Lam.) Oken   
Crassulaceae Echeveria gibbiflora DC.   
Crassulaceae Echeveria gracilis Rose ex E. Walther   
Crassulaceae Echeveria heterosepala Rose   
Crassulaceae Echeveria nodulosa (Baker) Otto   
Crassulaceae Echeveria nuda Lindl.   
Crassulaceae Echeveria peacockii Croucher   
Crassulaceae Echeveria pulvinata Rose   
Crassulaceae Echeveria purpusorum (Rose) A. Berger   
Crassulaceae Echeveria setosa Rose et Purpus   
Crassulaceae Echeveria pallida E. Walther   
Crassulaceae Graptopetalum mexicanum Matuda   
Crassulaceae Kalanchoe blossfeldiana Poelln.   
Crassulaceae Kalanchoe daigremontiana Raym.-Hamet et H. Perrier   
Crassulaceae Kalanchoe mortagei Raym.-Hamet et H. Perrier   
Crassulaceae Kalanchoe pinnata (Lam.) Pers.   
Crassulaceae Sedum calcicola B.L. Rob. et Greenm.   
Crassulaceae Sedum mexicanum Britton   
Crassulaceae Sedum morganianum E. Walther   
Crassulaceae Sedum praealtum A. DC.   
Crassulaceae Sedum allantoides Rose   
Crassulaceae Sedum dendroideum Moc. et Sessé ex DC.   
Crassulaceae Thompsonella minutiflora (Rose) Britton et Rose   
Cucurbitaceae Apodanthera undulata A. Gray var. australis McVaugh
Cucurbitaceae Citrullus lanatus (Thunb.) Matsum. et Nakai   
Cucurbitaceae Cucumis anguria L.   
Cucurbitaceae Cucumis melo L.   
Cucurbitaceae Cucumis sativus L.   
Cucurbitaceae Cucurbita argyrosperma C. Huber   
Cucurbitaceae Cucurbita ficifolia Bouché   
Cucurbitaceae Cucurbita moschata Duchesne   
Cucurbitaceae Cucurbita pepo L.   
Cucurbitaceae Cyclanthera dissecta (Torr. et A. Gray) Arn.   
Cucurbitaceae Echinopepon X pubescens (Cogn.) Rose   
Cucurbitaceae Lagenaria siceraria (Molina) Standl.   
Cucurbitaceae Luffa aegyptiaca Mill.   
Cucurbitaceae Melothria pendula L.   
Cucurbitaceae Microsechium palmatum (Ser.) Cogn.   
Cucurbitaceae Parasicyos dieterleae Lira et R. Torres   
Cucurbitaceae Sicyos laciniatus Hillebr.   
Cucurbitaceae Sicyos parviflorus Willd.   
Cupressaceae Cupressus lindleyi Klotzsch ex Endl.   
Cupressaceae Cupressus lusitanica Mill.   
Cupressaceae Cupressus lusitanica Mill. var. benthamii (Endl.) Carrière
Cupressaceae Cupressus sempervirens L.   
Cupressaceae Juniperus communis L.   
Cupressaceae Juniperus deppeana Steud.   
Cupressaceae Juniperus flaccida Schltdl.   
Cyperaceae Bulbostylis capillaris (L.) Kunth ex C.B. Clarke   
Cyperaceae Bulbostylis junciformis (Kunth) C.B. Clarke   
Cyperaceae Bulbostylis juncoides (Vahl) Kük. ex Herter   
Cyperaceae Carex anisostachys Liebm.   
Cyperaceae Carex humboldtiana Steud.   
Cyperaceae Carex longicaulis Boeckeler   
Cyperaceae Carex planostachys Kunze   
Cyperaceae Carex scabrella Wahlenb.   
Cyperaceae Carex schiedeana Kunze   
Cyperaceae Carex standleyana Steyerm.   
Cyperaceae Carex turbinata Liebm.   
Cyperaceae Carex muehlenbergii Willd. var. xalapensis (Kunth) Britton
Cyperaceae Cyperus aggregatus (Willd.) Endl.   
Cyperaceae Cyperus ciliatus Jungh.   
Cyperaceae Cyperus elegans L.   
Cyperaceae Cyperus esculentus L.   
Cyperaceae Cyperus flavescens L.   
Cyperaceae Cyperus hermaphroditus (Jacq.) Standl.   
Cyperaceae Cyperus laevigatus L.   
Cyperaceae Cyperus manimae Kunth   
Cyperaceae Cyperus niger Ruiz et Pav.   
Cyperaceae Cyperus ochraceus Vahl   
Cyperaceae Cyperus odoratus Burm.f.   
Cyperaceae Cyperus pycnostachyus (Kunth) Kunth   
Cyperaceae Cyperus seslerioides Kunth   
Cyperaceae Cyperus spectabilis Link   
Cyperaceae Cyperus subambiguus Kük.   
Cyperaceae Cyperus surinamensis Rottb.   
Cyperaceae Cyperus tenerrimus J. Presl et C. Presl   
Cyperaceae Cyperus thyrsiflorus Boeckeler   
Cyperaceae Cyperus laxus Lam.   
Cyperaceae Eleocharis acicularis (L.) Roem. et Schult.   
Cyperaceae Eleocharis geniculata (L.) Roem. et Schult.   
Cyperaceae Eleocharis macrostachya Britton   
Cyperaceae Eleocharis montana (Kunth) Roem. et Schult.   
Cyperaceae Eleocharis montevidensis Kunth   
Cyperaceae Fimbristylis aestivalis Vahl   
Cyperaceae Fimbristylis mexicana Palla   
Cyperaceae Fuirena incompleta Nees   
Cyperaceae Fuirena simplex Vahl   
Cyperaceae Pycreus lanceolatus (Poir.) C.B. Clarke   
Cyperaceae Pycreus niger (Ruiz et Pav.) Cufod.   
Cyperaceae Rhynchospora macrochaeta Steud. ex Boeckeler   
Cyperaceae Schoenoplectus americanus (Pers.) Volkart   
Cyperaceae Schoenus nigricans L.   
Cyperaceae Scirpus polyphyllus Vahl   
Dioscoreaceae Dioscorea convolvulacea Cham. et Schltdl.   
Ebenaceae Diospyros virginiana L.   
Ebenaceae Diospyros oaxacana Standl.   
Elaeocarpaceae Muntingia calabura L.   
Ephedraceae Ephedra compacta Rose   
Equisetaceae Equisetum hyemale L.   
Equisetaceae Equisetum myriochaetum Schltdl. et Cham.   
Ericaceae Arbutus xalapensis Kunth   
Ericaceae Arctostaphylos pungens Kunth   
Ericaceae Comarostaphylis polifolia (Kunth) Zucc. ex Klotzsch   
Ericaceae Vaccinium confertum Kunth   
Ericaceae Vaccinium leucanthum Schltdl.   
Erythroxylaceae Erythroxylum compactum Rose   
Euphorbiaceae Acalypha phleoides Cav.   
Euphorbiaceae Acalypha purpurascens Kunth   
Euphorbiaceae Acalypha monostachya Cav.   
Euphorbiaceae Cnidoscolus tehuacanensis Breckon   
Euphorbiaceae Cnidoscolus aconitifolius (Mill.) I.M. Johnst.   
Euphorbiaceae Croton ciliatoglandulifer Ortega   
Euphorbiaceae Croton morifolius Willd.   
Euphorbiaceae Euphorbia antisyphilitica Zucc.   
Euphorbiaceae Euphorbia cumbrae Boiss.   
Euphorbiaceae Euphorbia dentata Michx.   
Euphorbiaceae Euphorbia graminea Schltdl. et Cham.   
Euphorbiaceae Euphorbia heterophylla L.   
Euphorbiaceae Euphorbia lactea Haw.   
Euphorbiaceae Euphorbia macropus (Klotzsch et Garcke) Boiss.   
Euphorbiaceae Euphorbia peganoides Boiss.   
Euphorbiaceae Euphorbia prostrata Burch. ex Hemsl.   
Euphorbiaceae Euphorbia pulcherrima Willd. ex Klotzsch   
Euphorbiaceae Euphorbia schlechtendalii Boiss.   
Euphorbiaceae Euphorbia tirucalli L.   
Euphorbiaceae Euphorbia tricolor Greenm.   
Euphorbiaceae Euphorbia berteroana Balb. ex Spreng.   
Euphorbiaceae Euphorbia cumbrae Boiss.   
Euphorbiaceae Euphorbia cymbifera (Schltdl.) V.W. Steinm.   
Euphorbiaceae Euphorbia dioeca Kunth   
Euphorbiaceae Euphorbia milii Des Moul. var. splendens (Bojer ex Hook.) Ursch et Leandri
Euphorbiaceae Jatropha dioica Sessé   
Euphorbiaceae Jatropha neopauciflora Pax   
Euphorbiaceae Jatropha spathulata (Ortega) Müll.Arg.   
Euphorbiaceae Manihot pauciflora Brandegee   
Euphorbiaceae Ricinus communis L.   
Euphorbiaceae Sebastiania bilocularis S. Watson   
Euphorbiaceae Sebastiania pavoniana (Müll.Arg.) Müll.Arg.   
Fouquieriaceae Fouquieria formosa Kunth   
Fouquieriaceae Fouquieria purpusii Brandegee   
Garryaceae Garrya laurifolia Benth.   
Garryaceae Garrya ovata Benth.   
Geraniaceae Erodium cicutarium (L.) L’Hér.   
Geraniaceae Geranium schiedeanum Schltdl.   
Geraniaceae Pelargonium hortorum L.H. Bailey   
Gesneriaceae Episcia cupreata (Hook.) Hanst.   
Hernandiaceae Gyrocarpus mocinoi Espejo   
Hypoxidaceae Hypoxis decumbens Lam.   
Iridaceae Crocosmia crocosmiiflora (Lemoine) N.E. Br.   
Iridaceae Iris germanica L.   
Iridaceae Tigridia pavonia (L.f.) DC.   
Krameriaceae Krameria cytisoides Cav.   
Lamiaceae Clinopodium mexicanum (Benth.) Govaerts   
Lamiaceae Leonotis nepetifolia (L.) R. Br.   
Lamiaceae Lepechinia mexicana (S. Schauer) Epling   
Lamiaceae Marrubium vulgare L.   
Lamiaceae Ocimum basilicum L.   
Lamiaceae Plectranthus scutellarioides (L.) R. Br.   
Lamiaceae Salvia aspera M. Martens et Galeotti   
Lamiaceae Salvia cacaliifolia Benth.   
Lamiaceae Salvia candicans M. Martens et Galeotti   
Lamiaceae Salvia hispanica L.   
Lamiaceae Salvia oaxacana Fernald   
Lamiaceae Salvia pannosa Fernald   
Lamiaceae Salvia podadena Briq.   
Lamiaceae Salvia purpurea Sessé et Moc.   
Lamiaceae Salvia sessei Benth.   
Lamiaceae Salvia thymoides Benth.   
Lamiaceae Salvia tiliifolia Vahl   
Lamiaceae Salvia villosa Fernald   
Lamiaceae Salvia brevilabra Franch.   
Lamiaceae Salvia circinnata Cav.   
Lamiaceae Stachys inclusa Epling   
Leguminosae Acacia acatlensis Benth.   
Leguminosae Acacia angustissima (Mill.) Kuntze   
Leguminosae Acacia bilimekii J.F. Macbr.   
Leguminosae Acacia cochliacantha Willd.   
Leguminosae Acacia compacta Rose   
Leguminosae Acacia constricta A. Gray   
Leguminosae Acacia coulteri A. Gray   
Leguminosae Acacia farnesiana (L.) Willd.   
Leguminosae Acacia macracantha Willd.   
Leguminosae Acacia mammifera Schltdl.   
Leguminosae Acacia pennatula (Schltdl. et Cham.) Benth.   
Leguminosae Acacia pringlei Rose   
Leguminosae Acacia schaffneri (S. Watson) F.J. Herm.   
Leguminosae Acacia subangulata Rose   
Leguminosae Acacia tequilana S. Watson   
Leguminosae Acacia velvae L. Rico   
Leguminosae Aeschynomene compacta Rose   
Leguminosae Aeschynomene fascicularis Cham. et Schltdl.   
Leguminosae Aeschynomene purpusii Brandegee   
Leguminosae Bauhinia deserti (Britton et Rose) Lundell   
Leguminosae Bauhinia divaricata L.   
Leguminosae Brongniartia oligosperma Baill.   
Leguminosae Caesalpinia cacalaco Humb. et Bonpl.   
Leguminosae Caesalpinia melanadenia (Rose) Standl.   
Leguminosae Caesalpinia pulcherrima (L.) Sw.   
Leguminosae Caesalpinia velutina (Britton et Rose) Standl.   
Leguminosae Cajanus cajan (L.) Millsp.   
Leguminosae Calliandra eriophylla Benth.   
Leguminosae Calliandra houstoniana (Mill.) Standl. var. anomala (Kunth) Barneby
Leguminosae Calliandropsis nervosus (Britton et Rose) H.M. Hern. et P. Guinet   
Leguminosae Canavalia hirsutissima J.D. Sauer   
Leguminosae Canavalia villosa Benth.   
Leguminosae Cologania angustifolia Kunth   
Leguminosae Cologania broussonetii (Balb.) DC.   
Leguminosae Conzattia multiflora (Robinson) Standl.   
Leguminosae Conzattia multiflora (Robinson) Standl.   
Leguminosae Coursetia glandulosa A. Gray   
Leguminosae Crotalaria incana L.   
Leguminosae Crotalaria longirostrata Hook. et Arn.   
Leguminosae Crotalaria pumila Ortega   
Leguminosae Crotalaria rotundifolia J.F. Gmel.   
Leguminosae Crotalaria sagittalis L.   
Leguminosae Dalea bicolor Willd.   
Leguminosae Dalea caeciliae Harms   
Leguminosae Dalea carthagenensis (Jacq.) J.F. Macbr.   
Leguminosae Dalea carthagenensis J.F. Macbr. var. capitulata (Rydb.) Barneby
Leguminosae Dalea greggii A. Gray   
Leguminosae Dalea tomentosa (Cav.) Willd.   
Leguminosae Delonix regia (Hook.) Raf.   
Leguminosae Desmanthus painteri (Britton et Rose) Standl.   
Leguminosae Desmanthus virgatus (L.) Willd.   
Leguminosae Desmodium axillare (Sw.) DC.   
Leguminosae Desmodium conzattii Greenm.   
Leguminosae Desmodium glabrum (Mill.) DC.   
Leguminosae Desmodium molliculum (Kunth) DC.   
Leguminosae Desmodium orbiculare Schltdl.   
Leguminosae Desmodium prehensile Schltdl.   
Leguminosae Desmodium procumbens (Mill.) Hitchc.   
Leguminosae Desmodium sericophyllum Schltdl.   
Leguminosae Desmodium subsessile Schltdl.   
Leguminosae Desmodium amplifolium Hemsl.   
Leguminosae Enterolobium cyclocarpum (Jacq.) Griseb.   
Leguminosae Eriosema pulchellum (Kunth) G. Don   
Leguminosae Erythrina americana Mill.   
Leguminosae Erythrina coralloides DC.   
Leguminosae Eysenhardtia polystachya (Ortega) Sarg.   
Leguminosae Galactia brachystachys Benth.   
Leguminosae Galactia multiflora Robinson   
Leguminosae Haematoxylum brasiletto H. Karst.   
Leguminosae Harpalyce formosa DC.   
Leguminosae Hybosema ehrenbergii (Schltdl.) Harms   
Leguminosae Indigofera conzattii Rose   
Leguminosae Indigofera densiflora M. Martens et Galeotti   
Leguminosae Indigofera suffruticosa Mill.   
Leguminosae Leucaena confertiflora Zarate   
Leguminosae Leucaena diversifolia (Schltdl.) Benth.   
Leguminosae Leucaena esculenta (DC.) Benth.   
Leguminosae Leucaena lanceolata S. Watson   
Leguminosae Leucaena leucocephala (Lam.) de Wit   
Leguminosae Leucaena diversifolia (Schltdl.) Benth.   
Leguminosae lndigofera miniata Ortega   
Leguminosae Lupinus uncinatus Schltdl.   
Leguminosae Lysiloma acapulcense (Kunth) Benth.   
Leguminosae Lysiloma divaricatum (Jacq.) J.F. Macbr.   
Leguminosae Macroptilium atropurpureum (DC.) Urb.   
Leguminosae Medicago polymorpha L.   
Leguminosae Medicago sativa L.   
Leguminosae Melilotus indicus (L.) All.   
Leguminosae Mimosa albida Willd.   
Leguminosae Mimosa lacerata Rose   
Leguminosae Mimosa luisana Brandegee   
Leguminosae Nissolia fruticosa Jacq.   
Leguminosae Nissolia microptera Poir.   
Leguminosae Pachyrhizus erosus Urb.   
Leguminosae Parkinsonia praecox (Ruiz et Pav.) Hawkins   
Leguminosae Phaseolus vulgaris L.   
Leguminosae Phaseolus coccineus L.   
Leguminosae Piscidia grandifolia (Donn. Sm.) I.M. Johnst.   
Leguminosae Pisum sativum L.   
Leguminosae Pithecellobium dulce (Roxb.) Benth.   
Leguminosae Prosopis laevigata (Willd.) M.C. Johnst.   
Leguminosae Rhynchosia longeracemosa M. Martens et Galeotti   
Leguminosae Rhynchosia pringlei Rose   
Leguminosae Rhynchosia pyramidalis (Lam.) Urb.   
Leguminosae Rhynchosia senna Hook.   
Leguminosae Senna apiculata (M. Martens et Galeotti) H.S. Irwin   
Leguminosae Senna atomaria (L.) H.S. Irwin et Barneby   
Leguminosae Senna guatemalensis (Donn. Sm.) H.S. Irwin et Barneby   
Leguminosae Senna unijuga (Rose) H.S. Irwin et Barneby   
Leguminosae Senna wislizenii (L.) Roxb.   
Leguminosae Senna holwayana (Rose) H.S. Irwin et Barneby   
Leguminosae Sophora secundiflora (Ortega) DC.   
Leguminosae Sphinga acatlensis (Benth.) Barneby et J.W. Grimes   
Leguminosae Tamarindus indica L.   
Leguminosae Tephrosia nicaraguensis Oerst.   
Leguminosae Vicia faba L.   
Leguminosae Zapoteca formosa (Kunth) H.M. Hern.   
Leguminosae Zornia reticulata Sm.   
Lentibulariaceae Pinguicula moranensis Kunth   
Loasaceae Eucnide grandiflora (Groenl.) Rose   
Loasaceae Gronovia scandens L.   
Loasaceae Mentzelia hispida Willd.   
Loganiaceae Plocosperma buxifolium Benth.   
Loranthaceae Phoradendron californicum Nutt.   
Loranthaceae Phoradendron dipterum Eichler   
Lythraceae Cuphea aequipetala Cav.   
Lythraceae Cuphea wrightii A. Gray   
Lythraceae Punica granatum L.   
Malpighiaceae Bunchosia biocellata Schltdl.   
Malpighiaceae Bunchosia palmeri S. Watson   
Malpighiaceae Byrsonima cinerea (Poir.) DC.   
Malpighiaceae Calcicola parvifolia (A. Juss.) W.R. Anderson et C. Davis   
Malpighiaceae Echinopterys eglandulosa (A. Juss.) Small   
Malpighiaceae Galphimia glauca Cav.   
Malpighiaceae Gaudichaudia galeottiana (Nied.) Chodat   
Malvaceae Althaea officinalis L.   
Malvaceae Anoda crenatiflora Ortega   
Malvaceae Anoda cristata (L.) Schltdl.   
Malvaceae Anoda guatemalensis Fryxell   
Malvaceae Bastardia viscosa (L.) Kunth   
Malvaceae Ceiba aesculifolia (Kunth) Britten et Baker f.   
Malvaceae Ceiba aesculifolia (Kunth) Britten et Baker f. subsp. parvifolia (Rose) P.E. Gibbs et Semir
Malvaceae Gossypium hirsutum L.   
Malvaceae Guazuma ulmifolia Lam.   
Malvaceae Heliocarpus terebinthaceus L.   
Malvaceae Heliocarpus velutina L.   
Malvaceae Herissantia crispa (L.) Brizicky   
Malvaceae Hibiscus elegans Standl.   
Malvaceae Hibiscus phoenicus L.   
Malvaceae Hibiscus rosa-sinensis L.   
Malvaceae Kearnemalvastrum lacteum (Aiton) D.M. Bates   
Malvaceae Lavatera trimestris L.   
Malvaceae Malva parviflora L.   
Malvaceae Malvastrum bicuspidatum (S. Watson) Rose   
Malvaceae Melochia pyramidata L.   
Malvaceae Melochia tomentosa L.   
Malvaceae Rhynchosida physocalyx (A. Gray) Fryxell   
Malvaceae Robinsonella chiangii Fryxell   
Malvaceae Robinsonella speciosa Fryxell   
Malvaceae Sida acuta Burm.f.   
Malvaceae Sida ciliaris L.   
Malvaceae Sida glabra Mill.   
Malvaceae Sida rhombifolia L.   
Malvaceae Sidastrum tehuacanum (Brandegee) Fryxell   
Malvaceae Waltheria americana L.   
Marantaceae Maranta leuconeura E. Morren   
Marantaceae Thalia geniculata L.   
Meliaceae Cedrela aoxacensis C. DC. et Rose   
Meliaceae Cedrela odorata L.   
Meliaceae Melia azedarach L.   
Moraceae Ficus carica L.   
Moraceae Ficus cotinifolia Kunth   
Moraceae Ficus crocata Mart. ex Miq.   
Moraceae Ficus petiolaris Kunth   
Moraceae Ficus trigonata L.   
Moraceae Ficus punctata Thunb.   
Moraceae Ficus velutina Humb. et Bonpl. ex Willd.   
Moraceae Maclura tinctoria (L.) D. Don ex Steud.   
Moraceae Morus alba L.   
Moraceae Morus celtidifolia Kunth   
Myricaceae Morella cerifera (L.) Small   
Myrtaceae Eucalyptus globulus Labill.   
Myrtaceae Psidium guajava L.   
Nephrolepidaceae Nephrolepis exaltata (L.) Schott   
Nyctaginaceae Boerhavia scandens L.   
Nyctaginaceae Bougainvillea spectabilis Willd.   
Nyctaginaceae Mirabilis glabrifolia (Ortega) I.M. Johnst.   
Nyctaginaceae Mirabilis jalapa L.   
Nyctaginaceae Okenia hypogaea Schltdl. et Cham.   
Oleaceae Fraxinus purpusii Brandegee   
Oleaceae Fraxinus uhdei (Wenz.) Lingelsh.   
Oleaceae Jasminum mesnyi Hance   
Oleaceae Jasminum sambac (L.) Aiton   
Oleaceae Ligustrum japonicum Thunb.   
Onagraceae Fuchsia encliandra (Zucc.) Steud.   
Onagraceae Gaura coccinea Nutt. ex Pursh   
Onagraceae Ludwigia octovalvis (Jacq.) P.H. Raven   
Onagraceae Oenothera laciniata Hill   
Onagraceae Oenothera pubescens Willd. ex Spreng.   
Opiliaceae Agonandra obtusifolia Standl.   
Opiliaceae Agonandra racemosa (DC.) Standl.   
Orchidaceae Barkeria lindleyana Bateman ex Lindl.   
Orchidaceae Dichromanthus cinnabarinus (Lex.) Garay   
Orchidaceae Domingoa purpurea (Lindl.) Van den Berg et Soto Arenas   
Orchidaceae Laelia albida Bateman ex Lindl.   
Orchidaceae Prosthechea pterocarpa (Lindl.) W.E. Higgins   
Orchidaceae Rhynchostele aptera (Lex.) Soto Arenas et Salazar   
Orchidaceae Rhynchostele maculata (Lex.) Soto Arenas et Salazar   
Orobanchaceae Conopholis alpina Liebm.   
Oxalidaceae Oxalis alpina (Rose) Rose ex R. Knuth   
Oxalidaceae Oxalis bipartita A. St.-Hil.   
Oxalidaceae Oxalis discolor Klotzsch   
Oxalidaceae Oxalis divergens Benth. ex Lindl.   
Papaveraceae Argemone mexicana L.   
Papaveraceae Bocconia arborea S. Watson   
Passifloraceae Turnera diffusa Willd. ex Schult.   
Passifloraceae Turnera ulmifolia L.   
Pedaliaceae Martynia annua L.   
Pedaliaceae Proboscidea fragrans (Lindl.) Decne.   
Pedaliaceae Proboscidea louisianica (Mill.) Thell.   
Phytolaccaceae Phytolacca icosandra L.   
Phytolaccaceae Rivina humilis L.   
Pinaceae Pinus herrerae Martínez   
Pinaceae Pinus lawsonii Roezl ex Gordon   
Pinaceae Pinus montezumae Lamb.   
Pinaceae Pinus oocarpa Schiede   
Pinaceae Pinus pringlei Shaw   
Pinaceae Pinus pseudostrobus Lindl.   
Pinaceae Pinus pseudostrobus Lindl. var. apulcensis (Lindl.) Shaw
Pinaceae Pinus strobus L.   
Pinaceae Pinus devoniana Lindl.   
Piperaceae Peperomia campylotropa A.W. Hill   
Piperaceae Peperomia umbilicata Ruiz et Pav.   
Piperaceae Peperomia urocarpa Fisch. et C.A. Mey.   
Piperaceae Piper amalago L.   
Piperaceae Piper auritum Kunth   
Piperaceae Piper sanctum (Miq.) Schltdl. ex C.DC.   
Plantaginaceae Plantago australis Lam.   
Plantaginaceae Plantago major L.   
Plumbaginaceae Plumbago pulchella Boiss.   
Plumbaginaceae Plumbago zeylanica L.   
Poaceae Aegopogon cenchroides Humb. et Bonpl. ex Willd.   
Poaceae Aegopogon tenellus (DC.) Trin.   
Poaceae Agrostis ghiesbreghtii E. Fourn.   
Poaceae Andropogon glomeratus (Walter) Britton, Sterns et Poggenb.   
Poaceae Anthephora hermaphrodita (L.) Kuntze   
Poaceae Aristida adscensionis L.   
Poaceae Aristida curvifolia E. Fourn.   
Poaceae Aristida divaricata Humb. et Bonpl. ex Willd.   
Poaceae Aristida glauca (Nees) Walp.   
Poaceae Aristida jorullensis Kunth   
Poaceae Aristida schiedeana Trin. et Rupr.   
Poaceae Aristida ternipes Cav.   
Poaceae Aristida flaccida Trin. et Rupr.   
Poaceae Arundo donax Forssk.   
Poaceae Avena fatua L.   
Poaceae Avena sativa L.   
Poaceae Bothriochloa barbinodis (Lag.) Herter   
Poaceae Bothriochloa laguroides (DC.) Herter   
Poaceae Bothriochloa saccharoides (Sw.) Rydb.   
Poaceae Bothriochloa springfieldii (Gould) Parodi   
Poaceae Bouteloua aristidoides (Kunth) Griseb.   
Poaceae Bouteloua barbata Lag.   
Poaceae Bouteloua chondrosioides (Kunth) Benth. ex S. Watson   
Poaceae Bouteloua curtipendula (Michx.) Torr.   
Poaceae Bouteloua distans Swallen   
Poaceae Bouteloua media (E. Fourn.) Gould et Kapadia   
Poaceae Bouteloua pedicellata Swallen   
Poaceae Bouteloua radicosa (E. Fourn.) Griffiths   
Poaceae Bouteloua repens (Kunth) Scribn. et Merr.   
Poaceae Bouteloua simplex Lag.   
Poaceae Bouteloua triaena (Trin.) Scribn.   
Poaceae Bouteloua uniflora Vasey   
Poaceae Bouteloua aristidoides (Kunth) Griseb.   
Poaceae Brachiaria fasciculata (Sw.) Parodi   
Poaceae Brachiaria meziana Hitchc.   
Poaceae Brachiaria mollis (Sw.) Parodi   
Poaceae Brachiaria fasciculata (Sw.) Parodi   
Poaceae Brachypodium mexicanum (Roem. et Schult.) Link   
Poaceae Briza minor L.   
Poaceae Briza subaristata Lam.   
Poaceae Bromus anomalus E. Fourn.   
Poaceae Bromus carinatus Hook. et Arn.   
Poaceae Bromus exaltatus Bernh.   
Poaceae Buchloe dactyloides (Nutt.) Engelm.   
Poaceae Cathestecum brevifolium Swallen   
Poaceae Cathestecum erectum Vasey et Hack.   
Poaceae Cathestecum prostratum J.Presl   
Poaceae Cathestecum varium Swallen   
Poaceae Cenchrus ciliaris L.   
Poaceae Cenchrus echinatus L.   
Poaceae Cenchrus incertus M.A. Curtis   
Poaceae Cenchrus multiflorus J. Presl   
Poaceae Cenchrus myosuroides Kunth   
Poaceae Cenchrus pilosus Kunth   
Poaceae Cenchrus tribuloides L.   
Poaceae Chloris ciliata Sw.   
Poaceae Chloris radiata (L.) Sw.   
Poaceae Chloris rufescens Steud.   
Poaceae Chloris submutica Kunth   
Poaceae Chloris virgata Sw.   
Poaceae Chloris rufescens Lag.   
Poaceae Chondrosum scorpioides (Lag.) Kunth   
Poaceae Chondrosum simplex (Lag.) Kunth   
Poaceae Chondrosum hirsutum (Lag.) Sweet   
Poaceae Cottea pappophoroides Kunth   
Poaceae Cymbopogon citratus (DC.) Stapf   
Poaceae Cynodon dactylon (L.) Pers.   
Poaceae Dactyloctenium aegypticum (L.) Willd.   
Poaceae Deschampsia liebmanniana (E. Fourn.) Hitchc.   
Poaceae Digitaria bicornis (Lam.) Roem. et Schult.   
Poaceae Digitaria californica (Benth.) Henrard   
Poaceae Digitaria ciliaris (Retz.) Koeler   
Poaceae Digitaria insularis (L.) Mez ex Ekman   
Poaceae Digitaria leucitis (Trin.) Henrard   
Poaceae Distichlis spicata (L.) Greene   
Poaceae Echinochloa colona (L.) Link   
Poaceae Echinochloa crus-galli (L.) P. Beauv.   
Poaceae Echinochloa oplismenoides (E. Fourn.) Hitchc.   
Poaceae Eleusine multiflora Hochst. ex A. Rich.   
Poaceae Elionurus tripsacoides Willd.   
Poaceae Elymus longifolius (J.G. Sm.) Gould   
Poaceae Elymus repens (L.) Gould   
Poaceae Enneapogon desvauxii P. Beauv.   
Poaceae Enteropogon chlorideus (J. Presl) Clayton   
Poaceae Eragrostis atrovirens Lange   
Poaceae Eragrostis barrelieri Daveau   
Poaceae Eragrostis cilianensis (All.) Janch.   
Poaceae Eragrostis ciliaris (L.) R. Br.   
Poaceae Eragrostis intermedia Hitchc.   
Poaceae Eragrostis lugens Nees   
Poaceae Eragrostis maypurensis (Kunth) Steud.   
Poaceae Eragrostis mexicana (Hornem.) Link   
Poaceae Eragrostis pectinacea (Michx.) Nees   
Poaceae Eragrostis pilosa (L.) P. Beauv.   
Poaceae Eragrostis swallenii Hitchc.   
Poaceae Eragrostis tephrosanthos Roem. et Schult.   
Poaceae Eriochloa nelsonii Scribn. et J.G. Sm.   
Poaceae Erioneuron avenaceum (Humb., Bonpl. et Kunth) Tateoka   
Poaceae Erioneuron avenaceum (Humb., Bonpl. et Kunth) Tateoka var. grandiflorum (Vasey) Gould
Poaceae Festuca amplissima Rupr. ex Galeotti   
Poaceae Festuca callosa (Piper) St.-Yves   
Poaceae Festuca lugens (E. Fourn.) Hitchc. ex Hern.-Xol.   
Poaceae Griffithsochloa multifida (Griffiths) G.J. Pierce   
Poaceae Heteropogon contortus (L.) P. Beauv. ex Roem. et Schult.   
Poaceae Hilaria cenchroides Kunth   
Poaceae Hordeum vulgare L.   
Poaceae Ichnanthus pallens (Sw.) Munro ex Benth.   
Poaceae Lasiacis divaricata (L.) Hitchc.   
Poaceae Lasiacis nigra Davidse   
Poaceae Lasiacis ruscifolia (Kunth) Hitchc. ex Chase   
Poaceae Leersia hexandra Sw.   
Poaceae Leptochloa dubia (Kunth) Nees   
Poaceae Leptochloa fusca (L.) Kunth subsp. uninervia (J. Presl) N.Snow
Poaceae Leptochloa panicoides (J. Presl) Hitchc.   
Poaceae Leptochloa mucronata (Michx.) Kunth   
Poaceae Lolium perenne L.   
Poaceae Lycurus phleoides Kunth   
Poaceae Melinis repens (Willd.) Zizka   
Poaceae Metcalfia mexicana (Scribn.) Conert   
Poaceae Microchloa kunthii Desv.   
Poaceae Muhlenbergia ciliata (Kunth) Kunth   
Poaceae Muhlenbergia depauperata Scribn.   
Poaceae Muhlenbergia distans Swallen   
Poaceae Muhlenbergia distichophylla (J. Presl) Kunth   
Poaceae Muhlenbergia emersleyi Vasey   
Poaceae Muhlenbergia gigantea (E. Fourn.) Hitchc.   
Poaceae Muhlenbergia implicata (Kunth) Trin.   
Poaceae Muhlenbergia longiligula Hitchc.   
Poaceae Muhlenbergia macroura (Humb., Bonpl. et Kunth) Hitchc.   
Poaceae Muhlenbergia microsperma (DC.) Trin.   
Poaceae Muhlenbergia montana (Nutt.) Hitchc   
Poaceae Muhlenbergia pubescens (Humb., Bonpl. et Kunth) Hitchc.   
Poaceae Muhlenbergia repens (J. Presl) Hitchc.   
Poaceae Muhlenbergia rigida (Kunth) Kunth   
Poaceae Muhlenbergia robusta (E. Fourn.) Hitchc.   
Poaceae Muhlenbergia spiciformis Trin.   
Poaceae Muhlenbergia tenella (Kunth) Trin.   
Poaceae Muhlenbergia tenuifolia (Kunth) Kunth   
Poaceae Muhlenbergia vaginata Swallen   
Poaceae Muhlenbergia versicolor Swallen   
Poaceae Muhlenbergia dubia E. Fourn.   
Poaceae Nassella lepida (Hitchc.) Barkworth   
Poaceae Nassella linearifolia (E. Fourn.) R.W. Pohl   
Poaceae Nassella mucronata (Kunth) R.W. Pohl   
Poaceae Nassella tenuissima (Trin.) Barkworth   
Poaceae Opizia stolonifera J. Presl   
Poaceae Oplismenus burmannii (Retz.) P. Beauv.   
Poaceae Oplismenus compositus (L.) P. Beauv.   
Poaceae Otatea acuminata (Munro) C.E. Calderón ex Soderstr.   
Poaceae Panicum bulbosum Kunth   
Poaceae Panicum decolorans Kunth   
Poaceae Panicum ghiesbreghtii E. Fourn.   
Poaceae Panicum hallii Vasey   
Poaceae Panicum hirticaule J. Presl   
Poaceae Panicum laxiflorum Lam.   
Poaceae Panicum maximum Jacq.   
Poaceae Panicum obtusum Kunth   
Poaceae Panicum virgatum L.   
Poaceae Pappophorum pappiferum (Lam.) Kuntze   
Poaceae Paspalum botterii (E. Fourn.) Chase   
Poaceae Paspalum conjugatum P.J. Bergius   
Poaceae Paspalum distichum L.   
Poaceae Paspalum humboldtianum Flüggé   
Poaceae Paspalum langei (E. Fourn.) Nash   
Poaceae Paspalum notatum Flüggé   
Poaceae Paspalum pubiflorum E. Fourn.   
Poaceae Paspalum denticulatum Trin.   
Poaceae Pennisetum crinitum (Kunth) Spreng.   
Poaceae Pennisetum distachyum (E. Fourn.) Rupr. ex Chase   
Poaceae Phalaris canariensis L.   
Poaceae Piptochaetium angustifolium (Hitchc.) Valencia et Costas   
Poaceae Piptochaetium fimbriatum (Humb., Bonpl. et Kunth) Hitchc.   
Poaceae Piptochaetium virescens (Humb., Bonpl. et Kunth) Parodi   
Poaceae Poa annua L.   
Poaceae Polypogon interruptus Kunth   
Poaceae Polypogon viridis (Gouan) Breistr.   
Poaceae Pringleochloa stolonifera (E. Fourn.) Scribn.   
Poaceae Saccharum officinarum L.   
Poaceae Schizachyrium sanguineum (Retz.) Alston   
Poaceae Schizachyrium tenerum Nees   
Poaceae Setaria italica (L.) P. Beauv.   
Poaceae Setaria leucopila (Scribn. et Merr.) K. Schum.   
Poaceae Setaria liebmannii E. Fourn.   
Poaceae Setaria macrostachya Kunth   
Poaceae Setaria parviflora (Poir.) M. Kerguelen   
Poaceae Setaria tenax Rich.) Desv.   
Poaceae Setaria viridis (L.) P. Beauv.   
Poaceae Setaria grisebachii E. Fourn.   
Poaceae Setaria verticillata (L.) P. Beauv.   
Poaceae Setariopsis latiglumis (Vasey) Scribn.   
Poaceae Sorghastrum nutans (L.) Nash   
Poaceae Sorghum bicolor (L.) Moench   
Poaceae Sorghum halepense (L.) Pers.   
Poaceae Sporobolus airoides (Torr.) Torr.   
Poaceae Sporobolus atrovirens (Kunth) Kunth   
Poaceae Sporobolus buckleyi Vasey   
Poaceae Sporobolus indicus (L.) R. Br.   
Poaceae Sporobolus pyramidalis P. Beauv.   
Poaceae Sporobolus pyramidatus (Lam.) C.L. Hitchc.   
Poaceae Sporobolus trichodes Hitchc.   
Poaceae Stipa constricta Hitchc.   
Poaceae Stipa editorum E. Fourn.   
Poaceae Stipa eminens Cav.   
Poaceae Stipa ichu (Ruiz et Pav.) Kunth   
Poaceae Trachypogon spicatus (L.f.) Kuntze   
Poaceae Tragus berteronianus Schult.   
Poaceae Trichloris pluriflora E. Fourn.   
Poaceae Tripsacum dactyloides (L.) L.   
Poaceae Tripsacum zopilotense Hern.-Xol. et Randolph   
Poaceae Trisetum irazuense (Kuntze) Hitchc.   
Poaceae Triticum aestivum L.   
Poaceae Zea mays L.   
Poaceae Zeugites americana Willd.   
Polemoniaceae Loeselia coerulea (Cav.) G. Don   
Polemoniaceae Loeselia glandulosa (Cav.) G. Don   
Polemoniaceae Loeselia purpusii Brandegee   
Polemoniaceae Polemonium caeruleum L.   
Polygalaceae Polygala cuspidulata S.F. Blake   
Polygalaceae Polygala scoparia Kunth   
Polygonaceae Antigonon leptopus Hook. et Arn.   
Polygonaceae Polygonum hydropiperoides Michx.   
Polygonaceae Polygonum lapathifolium L.   
Polygonaceae Rumex acetosella L.   
Polygonaceae Rumex crispus L.   
Polygonaceae Ruprechtia fusca Fernald   
Portulacaceae Portulaca grandiflora Hook.   
Portulacaceae Portulaca oleracea L.   
Portulacaceae Portulaca pilosa L.   
Portulacaceae Talinum paniculatum Ruiz et Pav.   
Primulaceae Anagallis arvensis L.   
Primulaceae Myrsine juergensenii (Mez) Ricketson et Pipoly   
Ranunculaceae Anemone mexicana Kunth   
Ranunculaceae Ranunculus petiolaris Humb., Bonpl. et Kunth ex DC.   
Ranunculaceae Thalictrum gibbosum Lecoy.   
Rhamnaceae Ceanothus greggii A. Gray   
Rhamnaceae Karwinskia mollis Schltdl.   
Rhamnaceae Rhamnus humboldtiana Willd. ex Schult.   
Rhamnaceae Ziziphus amole (Sessé et Moc.) M.C. Johnst.   
Rhamnaceae Ziziphus pedunculata (Brandegee) Standl.   
Rosaceae Crataegus mexicana D. Don   
Rosaceae Crataegus orientalis Pall. ex M. Bieb. subsp. presliana K.I.Chr.
Rosaceae Malacomeles denticulata (Kunth) G.N. Jones   
Rosaceae Prunus dulcis (Mill.) D.A. Webb   
Rosaceae Prunus armeniaca L.   
Rosaceae Prunus persica (L.) Stokes   
Rosaceae Prunus virginiana L.   
Rosaceae Rosa centifolia Lour.   
Rosaceae Rosa gallica L.   
Rosaceae Rubus adenotrichus Schltdl.   
Rosaceae Rubus liebmannii Focke   
Rubiaceae Bouvardia longiflora (Cav.) Kunth   
Rubiaceae Bouvardia ternifolia (Cav.) Schltdl.   
Rubiaceae Chiococca alba (L.) Hitchc.   
Rubiaceae Crusea diversifolia (Kunth) W.R. Anderson   
Rubiaceae Galium fuscum M. Martens et Galeotti   
Rubiaceae Galium mexicanum Kunth   
Rubiaceae Galium triflorum Michx.   
Rubiaceae Randia capitata DC.   
Rubiaceae Richardia scabra L.   
Rutaceae Casimiroa edulis La Llave   
Rutaceae Esenbeckia macrantha Rose   
Rutaceae Ptelea trifoliata L.   
Rutaceae Ruta chalepensis L.   
Salicaceae Populus alba L.   
Salicaceae Salix bonplandiana Kunth   
Salicaceae Salix humboldtiana Willd.   
Salicaceae Salix nigra Marshall   
Sapindaceae Cardiospermum halicacabum L.   
Sapindaceae Dodonaea viscosa (L.) Jacq.   
Sapindaceae Sapindus saponaria L.   
Saxifragaceae Pterostemon rotundifolius Ramírez   
Scrophulariaceae Bacopa monnieri (L.) Wettst.   
Scrophulariaceae Berendtiella levigata (B.L. Rob. et Greenm.) Thieret   
Scrophulariaceae Buddleja cordata Kunth   
Scrophulariaceae Buddleja parviflora Kunth   
Scrophulariaceae Capraria biflora L.   
Scrophulariaceae Castilleja arvensis Schltdl. et Cham.   
Scrophulariaceae Lamourouxia dasyantha (Cham. et Schltdl.) W.R. Ernst   
Scrophulariaceae Lamourouxia nelsonii B.L. Rob. et Greenm.   
Scrophulariaceae Lamourouxia viscosa Kunth   
Scrophulariaceae Penstemon barbatus (Cav.) Roth   
Scrophulariaceae Penstemon campanulatus Cav.) Willd.   
Scrophulariaceae Russelia obtusata S.F. Blake   
Scrophulariaceae Schistophragma pusillum Benth.   
Scrophulariaceae Veronica polita Fr.   
Simaroubaceae Castela tortuosa Liebm.   
Solanaceae Datura discolor Bernh.   
Solanaceae Brugmansia suaveolens (Humb. et Bonpl. ex Willd.) Bercht. et J. Presl   
Solanaceae Capsicum annuum L.   
Solanaceae Cestrum nocturnum L.   
Solanaceae Datura × candida (Pers.) Saff.   
Solanaceae Datura innoxia Mill.   
Solanaceae Datura stramonium L.   
Solanaceae Jaltomata procumbens (Cav.) J.L. Gentry   
Solanaceae Lycianthes acapulcensis (Baill.) D’Arcy   
Solanaceae Lycopersicon esculentum Mill.   
Solanaceae Margaranthus solanaceous Schltdl.   
Solanaceae Nicotiana glauca Graham   
Solanaceae Nicotiana tabacum L.   
Solanaceae Petunia hybrida Vilm.   
Solanaceae Physalis foetens Poir.   
Solanaceae Physalis nicandroides Schltdl.   
Solanaceae Physalis philadelphica Lam.   
Solanaceae Solandra grandiflora Sw.   
Solanaceae Solandra maxima (Moc. et Sessé ex Dunal) P.S. Green   
Solanaceae Solanum adscendens Sendtn.   
Solanaceae Solanum agrimoniifolium Rydb.   
Solanaceae Solanum americanum Mill.   
Solanaceae Solanum bulbocastanum Dunal   
Solanaceae Solanum dulcamaroides Dunal   
Solanaceae Solanum lanceolatum Cav.   
Solanaceae Solanum nigrescens M. Martens et Galeotti   
Solanaceae Solanum rostratum Dunal   
Solanaceae Solanum tridynamum Dunal   
Solanaceae Solanum verbascifolium L.   
Solanaceae Solanum asperolanatum Ruiz et Pav.   
Solanaceae Solanum erianthum D. Don   
Solanaceae Solanum nigricans M. Martens et Galeotti   
Styracaceae Styrax argenteus C. Presl   
Taxodiaceae Taxodium huegelii C. Lawso   
Tropaeolaceae Tropaeolum majus L.   
Typhaceae Typha domingensis Pers.   
Ulmaceae Celtis caudata Planch.   
Ulmaceae Celtis pallida Torr.   
Ulmaceae Trema micrantha (L.) Blume   
Urticaceae Boehmeria macrophylla Hornem.   
Urticaceae Parietaria debilis G. Forst.   
Urticaceae Phenax mexicanus Wedd.   
Urticaceae Pilea trianthemoides (Sw.) Lindl.   
Verbenaceae Bouchea prismatica (L.) Kuntze   
Verbenaceae Glandularia elegans (Kunth) Umber   
Verbenaceae Glandularia corymbosa (Ruiz et Pav.) N. O’Leary et P. Peralta   
Verbenaceae Lantana achyranthifolia Desf.   
Verbenaceae Lantana camara L.   
Verbenaceae Lantana involucrata L.   
Verbenaceae Lantana urticoides Hayek   
Verbenaceae Lantana velutina M. Martens et Galeotti   
Verbenaceae Lantana horrida Kunth   
Verbenaceae Lippia oaxacana B.L. Rob. et Greenm.   
Verbenaceae Lippia graveolens Kunth   
Verbenaceae Phyla scaberrima (Juss. ex Pers.) Moldenke   
Verbenaceae Vitex mollis Kunth   
Violaceae Hybanthus attenuatus (Humb. et Bonpl. ex Schult.) Schulze-Menz   
Vitaceae Cissus tiliacea Kunth   
Vitaceae Vitis vinifera L.   
Xanthorrhoeaceae Aloe vera (L.) Burm.f.   
Xanthorrhoeaceae Asphodelus fistulosus L.   
Zamiaceae Dioon caputoi De Luca, Sabato et Vázq. Torres   
Zamiaceae Dioon rzedowskii De Luca et al.   
Zygophyllaceae Kallstroemia hirsutissima Vail   
Zygophyllaceae Kallstroemia intermedia Rydb.   
Zygophyllaceae Morkillia mexicana (DC.) Rose et Painter   

Appendix 2: Seed germination experiments carried out at the Fes-I UNAM Seed Bank (Fes-I) and at the RBG Kew’s Millennium Seed Bank (MSB)

Family Taxon Seed-bank Filled seeds (%) Pretreatment Temperature (°C) Photo-period (L/D; h) Germination (%) Dormancy Index (DI)
Acanthaceae Gypsacanthus nelsonii E.J. Lott, V. Jaram. et Rzed. Fes-I    30 12/12 58.9 0.4
Achatocarpaceae Phaulothamnus spinescens A. Gray Fes-I    30 12/12 46.0 0.5
Amaranthaceae Chenopodium murale L. Fes-I    30 12/12 85.0 0.2
   MSB 100   25 8/16 75 0.25
Amaranthaceae Gomphrena serrata L. MSB 14      
Amaranthaceae Iresine discolor Greenm. Fes-I    30 12/12 96.9 0.0
Anacardiaceae Actinocheita filicina (Turckz.) Bullock Fes-I    30 12/12 17.9 0.6
   MSB 85 Chipped with scalpel 25 8/16 50 0.5
Anacardiaceae Amphipterygium adstringens (Schltdl.) Standl. Fes-I    30 12/12 100.0 0.33
   MSB 27 Covering structure partially removed 35/20 8/16 67  
Anacardiaceae Cyrtocarpa procera Kunth Fes-I    30 12/12 50.0 0.5
   MSB 90 Scarify with mini saw 20 8/16 90 0.1
Apocynaceae Matelea trachyantha (Greenm.) W.D. Stevens Fes-I    30 12/12 94.0 0.1
Apocynaceae Vallesia glabra (Cav.) Link Fes-I    30 12/12 43.3 0.5
   MSB 95   25 8/16 95 0.05
Asparagaceae Agave karwinskii Zucc. Fes-I    30 12/12 27.3 0.7
Asparagaceae Agave kerchovei Lem. Fes-I    30 12/12 82.2 0.2
Asparagaceae Agave macroacantha Zucc. Fes-I    30 12/12 79.2 0.2
   MSB 85   20 8/16 62 0.38
Bignoniaceae Astianthus viminalis (Kunth) Baill. MSB 100   25 8/16 55 0.45
Bignoniaceae Tecoma stans (L.) Juss. ex Kunth Fes-I    30 12/12 68.3 0.0
   MSB 30   20 8/16 38 0.62
Boraginaceae Cordia bullata (L.) Roem. et Schult.
var. globosa (Jacq.) Govaerts
Fes-I    30 12/12 23.1 0.8
   MSB 60      
Boraginaceae Cordia curassavica (Jacq.) Roem. et Schult. Fes-I    30 12/12 6.4 0.9
   MSB 77 Covering structure partially removed 25 8/16 100 0
Bromeliaceae Hechtia podantha Mez Fes-I    30 12/12 100.0 0.0
   MSB 54   25 8/16 100 0
Bromeliaceae Hechtia roseana L.B.Sm. Fes-I    30 12/12 13.3 0.9
Burseraceae Bursera aptera Ramirez Fes-I    30 12/12 0.0 1.0
   MSB 65      
Burseraceae Bursera fagaroides (Kunth) Engl. Fes-I    30 12/12 100.0 0.0
   MSB 50      
Burseraceae Bursera morelensis Ramirez MSB 45      
Burseraceae Bursera submoniliformis Engl. Fes-I    30 12/12 15.4 0.8
   MSB 30 Remove flesh from fruit 20 8/16 17 0.83
Cactaceae Escontria chiotilla (F.A.C. Weber) Rose Fes-I    30 12/12 96.7 0.0
   MSB 95   20 8/16 95 0.05
Cactaceae Ferocactus recurvus (Karw. ex Pfeiff) N.P. Taylor Fes-I    30 12/12 70.0 0.2
   MSB 91      
Cactaceae Myrtillocactus geometrizans (Mart. ex Pfeiff) Console Fes-I    30 12/12 70.0 0.2
   MSB 68      
Cactaceae Opuntia decumbens Salm-Dyck Fes-I    30 12/12 30.0 0.7
   MSB 95      
Cactaceae Opuntia depressa Rose Fes-I    30 12/12 23.3 0.8
Cactaceae Opuntia pilifera F.A.C. Weber Fes-I    30 12/12 65.0 0.4
   MSB 95      
Cactaceae Opuntia velutina F.A.C. Weber Fes-I    30 12/12 23.3 0.8
Cactaceae Pachycereus weberi (J.M. Coult) Backeb. Fes-I    30 12/12 81.7 0.2
Cactaceae Polaskia chichipe (Gosselin) Backeb. Fes-I    30 12/12 98.2 0.0
Cactaceae Stenocereus pruinosus (Otto ex Pfeiff.) Buxb. Fes-I I    30 12/12 90.0 0.0
Cactaceae Stenocereus stellatus (Pfeiff.) Riccob. Fes-I    30 12/12 100.0 0.0
   MSB 89      
Cannabaceae Celtis pallida Torr. Fes-I    30 12/12 70.0 0.3
Cannabaceae Celtis iguanaea (Jacq.) Sarg. MSB 95   35/20 8/16 79 0.21
Celastraceae Schaefferia stenophylla Standl. MSB 85   35/20 8/16 93 0.07
Compositae Acourtia oxylepis (A. Gray) Reveal et R.M.King MSB 100   15–25 8/16 100 0
Compositae Flaveria cronquistii A.M. Powell Fes-I    30 12/12 59.6 0.4
   MSB 100   20–25 8/16 100 0
Compositae Flaveria ramosissima Klatt MSB 95   35/20 8/16 95 0.05
Compositae Gymnolaena oaxacana (Greenm.) Rydb. Fes-I    30 12/12 38.3 0.4
   MSB 20   25 8/16 75 0.25
Compositae Parthenium hysterophorus L. MSB 100   20 8/16 90 0.1
Compositae Porophyllum ruderale (Jacq.) Cass.
subsp. macrocephalum (DC.) R.R. Johnson
MSB 100      
Compositae Sanvitalia procumbens Lam. Fes-I    30 12/12 50.0 0.5
   MSB 100      
Compositae Viguiera dentata (Cav.) Spreng. MSB 100   15 8/16 100 0
Compositae Zinnia peruviana (L.) L. Fes-I    30 12/12 33.3 0.7
   MSB 65      
Convolvulaceae Ipomoea pauciflora M. Martens et Galeotti Fes-I    30 12/12 100.0 0.0
   MSB 90 Chipped with scalpel 20–25 8/16 100 0
Cucurbitaceae Cucumis dipsaceus Ehrenb. ex Spach Fes-I    30 12/12 68.3 0.1
Euphorbiaceae Cnidoscolus tehuacanensis Breckon Fes-I    30 12/12 41.7 0.5
   MSB 100      
Euphorbiaceae Croton mazapensis Lund Fes-I    30 12/12 31.3 0.6
Euphorbiaceae Jatropha neopauciflora Pax Fes-I    30 12/12 4.4 0.0
   MSB 70 Filed 25 8/16 43 0.57
Euphorbiaceae Jatropha rzedowskii J. Jiménez Ram. Fes-I    30 12/12 4.7 1.0
   MSB 70   25 8/16 100 0
Euphorbiaceae Manihot pauciflora Brandegee Fes-I    30 12/12 60.0 0.4
   MSB 90   25 8/16 90 0.1
Fouqueriaceae Fouquieria formosa Kunth Fes-I    30 12/12 91.4 0.1
   MSB 94   15–25 8/16 100 0
Hernandiaceae Gyrocarpus mocinoi Espejo Fes-I    30 12/12 18.3 0.8
   MSB 90 Chip both radicle tip and cotyledon ends of seed 20–25 8/16 100 0
Leguminosae Acacia angustissima (Mill.) Kuntze Fes-I   Chipping 30 12/12 100.0 0.0
Leguminosae Acacia cochliacantha Humb. et Bonpl. ex Willd. Fes-I   Chipping 30 12/12 100.0 0.0
   MSB 96 Chipped with scalpel 20–25 8/16 100 0
Leguminosae Acacia compacta Rose MSB 50 Chipped with scalpel 15–25 8/16 100 0
Leguminosae Acacia farnesiana (L.) Willd. Fes-I   Chipping 30 12/12 81.7 0.0
   MSB 66 Chipped with scalpel 20 8/16 100 0
Leguminosae Caesalpinia melanadenia (Rose) Standl. MSB 100 Chipped with scalpel 15–20 8/16 70 0.3
   Fes-I   Chipping 30 12/12 78.3 0.0
Leguminosae Coursetia caribaea (Jacq.) Lavin Fes-I   Chipping 30 12/12 0.0 1.0
   MSB 100 Chipped with scalpel 20–25 8/16 100 0
Leguminosae Coursetia glandulosa A. Gray Fes-I   Chipping 30 12/12 94.6 0.1
   MSB 100 Chipped with scalpel 25 8/16 100 0
Leguminosae Enterolobium cyclocarpum (Jacq.) Griseb. Fes-I   Chipping 30 12/12 100.0 0.0
Leguminosae Indigofera conzattii Rose Fes-I   Chipping 30 12/12 76.7 0.0
   MSB 100 Chipped with scalpel 20–25 8/16 100 0
Leguminosae Leucaena leucocephala (Lam.) de Wit MSB 100 Chipped with scalpel 15 8/16 90 0.1
Leguminosae Mimosa luisana Brandegee Fes-I   Chipping 30 12/12 88.3 0.0
   MSB 100 Chipped with scalpel 20 8/16 100 0
Leguminosae Mimosa polyantha Benth. Fes-I   Chipping 30 12/12 3.3 1.0
   MSB 95 Chipped with scalpel 20 8/16 100 0
Leguminosae Parkinsonia praecox (Ruiz et Pav.) Hawkins Fes-I   Chipping 30 12/12 100.0 0.0
   MSB 90 Chipped with scalpel 20–25 8/16 100 0
Leguminosae Pithecellobium dulce (Roxb.) Benth. Fes-I   Chipping 30 12/12 100.0 0.0
Leguminosae Prosopis laevigata (Willd.) M.C. Johnst. Fes-I   Chipping 30 12/12 100.0 0.0
   MSB 40 Covering structure removed and seed coat chipped 25 8/16 100 0
Leguminosae Senna wislizeni (Rose) H.S. Irwin et Barneby Fes-I   Chipping 30 12/12 100.0 0.0
   MSB 100 Chipped with scalpel 25 8/16 100 0
Loasaceae Mentzelia hispida Willd. Fes-I