Advertisement

Genetic Resources and Crop Evolution

, Volume 64, Issue 5, pp 955–965 | Cite as

Genetic diversity in tolerance of wild Avena species to aluminium (Al)

  • I. G. LoskutovEmail author
  • I. A. Kosareva
  • S. V. Melnikova
  • E. V. Blinova
  • L. V. Bagmet
Research Article
  • 324 Downloads

Abstract

An evaluation of diversity of aluminium (Al) tolerance of 180 genebank accessions of diploid, tetraploid and hexaploid of wild Avena species from the world collection of the N.I. Vavilov Institute of Plant Genetic Resources (VIR) showed that the accessions with a high degree of aluminium tolerance belonged to the diploids A. canariensis, A. longiglumis and A. wiestii, the tetraploids A. barbata, A. vaviloviana, and hexaploids A. ludoviciana and A. sterilis. A comparison of the data on Al tolerance with the soil conditions demonstrated that most highly tolerance accessions tend to be collected on different type of soils. According to the results of the principal component analysis, preliminary screening for Al tolerance can be carried out among hexaploid species with higher degree of plant resistance to pathogens.

Keywords

Aluminium tolerance Avena Collecting sites Geographical analysis Principal component analysis Types of soils Wild species 

Notes

Acknowledgments

From 2014 this research and preparation of the manuscript was supported by the Russian Scientific Foundation Project No. 14-16-00072.

Funding

This study was funded by the Russian Scientific Foundation Project No. 14-16-00072.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aniol AM (1991a) Genetics of acid tolerant plant. In: Wright RJ et al. (eds) Plant-soil interaction at low pH. Kluwer, Dordrecht, pp 1007–1017CrossRefGoogle Scholar
  2. Aniol AM (1991b) Metody okreslania toleranoyinosoi zboz na toksyozne dziatanie ionow glinu. Bul Inst Hodowlii Aklim Roslin 143:3–14Google Scholar
  3. Aniol AM (1996) Aluminium uptake by roots of rye seedlings of differing tolerance to aluminium toxicit. Euphytica 92:155–162CrossRefGoogle Scholar
  4. Castilhos G, Fariasb JG, Schneider AB, Oliveira PH, Nicoloso FT, Schetinger MRC, Delatorre CA (2011) Aluminum-stress response in oat genotypes with monogenic tolerance. Environ Exp Bot 74:114–121CrossRefGoogle Scholar
  5. Floss EL, Dechen AR, Carmelo QAC, Monteiro FA (1996) Oat genotypes evaluation to aluminum toxicity. In: Proceedings of 5th international Oat conference Canada vol 2, pp 623–625Google Scholar
  6. Gupta N, Gaurav SS, Kumar A (2013) Molecular basis of aluminium toxicity in plants: a review. Am J Plant Sci 4:21–37CrossRefGoogle Scholar
  7. IBPGR (1985) Oat descriptor list. IBPGR, RomeGoogle Scholar
  8. Johnson JP, Carver BF, Baligar VC (1997) Productivity in Great Plains acid soils of wheat genotypes selected for aluminium tolerance. Plant Soil 188:101–106CrossRefGoogle Scholar
  9. Karsai I, Bedo Z (1998) Relationship between anther culture response and aluminium tolerance in wheat (Triticum aestivum L.). Euphytica 100:249–252CrossRefGoogle Scholar
  10. Klimashevsky EL (1983) Soil acidity—genotype—plant breeding. Vest Agric Sci 9:16–25Google Scholar
  11. Klimashevsky EL, Chernysheva NF (1980) Genetic variability of resistance to ions of toxinity (hydrogen and aluminium) in root zone: theory and practical aspects. Agric Biol 15:270–277Google Scholar
  12. Kosareva IA (2012) The study of crops and wild relatives collections for characteristic of resistance to toxic elements of acid soils. Proc Appl Bot Gen Breed 170:35–45Google Scholar
  13. Kosareva IA, Semenova EV (2005) Laboratory screening of wheat collection to aluminium tolerance. Russ Agric Sci 5:5–7Google Scholar
  14. Kosareva IA, Davydova GV, Semenova EV (1998) Diagnostics of resistance of plants of Avena sativa to high concentration of ions aluminium in soil solution. Agric Biol 5:73–76Google Scholar
  15. Kosareva IA, Loskutov IG, Melnikova SV (2013) Aluminium tolerance in Russian breeding oat varieties. Proc Appl Bot Gen Breed 171:114–116Google Scholar
  16. Lisitsyn EM (2013) Genotypic diversity of reaction of photosyntetic apparatus of oats on edaphic stress. Proc Appl Bot Gen Breed 171:100–104Google Scholar
  17. Loskutov IG (1998) The collection of wild oat species of C.I.S. as a source of diversity in agricultural traits. Genet Resour Crop Evol 45:291–295CrossRefGoogle Scholar
  18. Loskutov IG (1999) Vavilov and his institute. A history of the world collection of plant resources in Russia. IPGRI, RomeGoogle Scholar
  19. Loskutov IG (2007) Oat (Avena L.). Distribution, taxonomy, evolution and breeding value. VIR, St-PetersburgGoogle Scholar
  20. Loskutov IG (2008) On evolutionary pathway of Avena species. Gen Res Crop Evol 55:211–220CrossRefGoogle Scholar
  21. Loskutov IG (2009) The history of the world collection of plant resources in Russia. VIR, St-PetersburgGoogle Scholar
  22. Loskutov IG, Rines HW (2011) Avena L. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer, Heidelberg, pp 109–184CrossRefGoogle Scholar
  23. Loskutov IG, Kosareva IA, Semenova EV (2001) Features of aluminum resistance in oat wild species. Oat Newslett 47. http://wheat.pw.usda.gov/ggpages/oatnewsletter/v47/
  24. Loskutov IG, Kovaleva ON, Blinova EV (2012) Methodological guidance directory for studing and maintaining VIR’s collections of barley and oat. VIR, St-PetersburgGoogle Scholar
  25. Loskutov IG, Melnikova SV, Bagmet LV (2016) Eco-geographical assessment of Avena L. wild species at the VIR herbarium and genebank collection. Genet Resour Crop Evol. doi: 10.1007/s10722-015-0344-1 Google Scholar
  26. Ma JF, Zheng SJ, Li XF, Takeda K, Matsumoto H (1997) A rapid hydroponic screening for aluminium tolerance in barley. Plant Soil 191:133–137CrossRefGoogle Scholar
  27. Mossor-Pietraszewska T (2001) Effect of aluminium on plant growth and metabolism. Acta Biochim Pol 48:673–686PubMedGoogle Scholar
  28. Nava IC, Delatorre CA, Duarte ITL, Pacheco MT, Federizzi LC (2006) Inheritance of aluminum tolerance and its effects on grain yield and grain quality in oats (Avena sativa L.). Euphytica 148:353–358CrossRefGoogle Scholar
  29. Nava IC, Delatorre CA, Pacheco MT, Scheeren PL, Federizzi LC (2015) Aluminium tolerance of oat cultivars under hydroponic and acid soil conditions. Expl Agric. doi: 10.1017/S0014479715000046 Google Scholar
  30. Nawrot M, Szarejko I, Maluszynski M (2001) Barley mutants with increased tolerance to aluminium toxicity. Euphytica 120:345–356CrossRefGoogle Scholar
  31. Oliveira PH, Federizzi LC, Milach SCK, Gotuzzo C, Sawasato JT (2005) Inheritance in oat (Avena sativa L.) of tolerance to soil aluminum toxicity. Crop Breed Appl Biotech 5:302–309CrossRefGoogle Scholar
  32. Pellet DM, Papernik LA, Jones DL, Darrah PR, Grunes DL, Kochian LV (1997) Involvement of multiple aluminium exclusion mechanisms in aluminium tolerance in wheat. Plant Soil 192:63–68CrossRefGoogle Scholar
  33. Rodionova NA, Soldatov VN, Merezhko VE, Yarosh NP, Kobylyansky VD (1994) Cultivated flora: oat, vol 2, part 3. Kolos, MoscowGoogle Scholar
  34. Rout G, Samantaray S, Das P (2001) Aluminium toxicity in plants: a review. Agron EDP Sci 21:3–21Google Scholar
  35. Schneider AB, Nava IC, Hervé CB, Islamovic E, Limberger E, Jackson EW, Delatorre CA (2015) Chromosome-anchored QTL conferring aluminum tolerance in hexaploid oat. Mol Breed 35:121. doi: 10.1007/s11032-015-0315-4 CrossRefGoogle Scholar
  36. Shannon MC (1997) Adaptation of plants to salinity. In: Sparks DL (ed) Advances in agronomy, vol 60. Academic, New York, pp 75–120Google Scholar
  37. Silva S (2012) Aluminium toxicity targets in plants. J Bot. Article ID 219462. doi. 10.1155/2012/219462
  38. Tang C, Diatloff E, Rengel Z, McGann B (2001) Growth response to subsurface soil acidity of wheat genotypes differing in aluminium tolerance. Plant Soil 236:1–10CrossRefGoogle Scholar
  39. Wright CP, Kibite S, Tinker NA, Molnar SJ (2005) Identification of molecular markers for aluminium tolerance in diploid oat through comparative mapping and QTL analysis. Theor Appl Genet 112:222–231CrossRefGoogle Scholar
  40. Yakovleva OV, Kapeshinsky AM (2012) Genetic basis of resistance to toxic aluminium ions in different species of cereals. Proc Appl Bot Gen Breed 170:46–58Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • I. G. Loskutov
    • 1
    • 2
    Email author
  • I. A. Kosareva
    • 1
  • S. V. Melnikova
    • 2
  • E. V. Blinova
    • 1
  • L. V. Bagmet
    • 1
  1. 1.N.I. Vavilov Institute of Plant Genetic Resources (VIR)Saint-PetersburgRussia
  2. 2.St-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations