Relationship between spike morphology and habitat of four Aegilops species of section Sitopsis

Abstract

This study examines the relationship between spike morphology and natural habitat for 84 accessions of four Aegilops species, belongs to section Sitopsis, Ae. bicornis, Ae. longissima, Ae. searsii, and Ae. sharonensis in genus Aegilops, section Sitopsis, wild relatives of Triticum aestivum L. These species are considered valuable genetic resources for future cultivation and breeding of domesticated wheat. The goals of the study were to: (1) document variation in spike morphology among these four species; (2) examine the relationship between spike morphology and native habitat; (3) document geographical distribution of distinct spike morphology; and (4) examine the relationship between spike morphology and heading time and value for these four species. The results reveal significant differences in spike morphology among species of section Sitopsis. The most noteworthy variation involved the absence/presence of lateral awn, such that species with lateral awn were restricted in coastal, though species without lateral awn were mainly distributed in inland. This suggests that local climate may be a determinant of variation in lateral awn, and that this trait may be subject to convergent evolution. Differences in heading time in sympatric area were also observed. The differences may enhance species divergence and could represent a lead speciation event. The results of this study will facilitate identification of populations or accessions of wild wheat with favorable traits and/or novel adaptive genes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alonso-Blanco C, Aarts MG, Bentsink L, Keurentjes JJ, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21(7):1877–1896

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Ankori H, Zohary D (1962) Natural hybridization between Aegilops sharonensis and Ae. longissima: a morphological and cytological study. Cytologia 27(3):314–324

    Article  Google Scholar 

  3. Bouyioukos C, Moscou MJ, Champouret N, Hernández-Pinzón I, Ward ER, Wulff BB (2013) Characterisation and analysis of the Aegilops sharonensis transcriptome, a wild relative of wheat in the Sitopsis Section. PLoS ONE 8(8):e72782

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Brody T (1983) Patterns of trait variation in the diploid wheats (Triticum, Aegilops) and the tetraploid species Triticum dicoccoides. Plant Syst Evol 143(4):257–275

    Article  Google Scholar 

  5. Dan J, Koyumdjisky H (1963) The soils of Israel and their distribution. J Soil Sci 14(1):12–20

    Article  Google Scholar 

  6. Danin A (1988) Flora and vegetation of Israel and adjacent areas. In: Yom-Tov Y, Tchernov E (eds) The zoogeography of Israel, Dr. W. Junk Publishers, Dordrecht, pp 129–158

  7. Eig A (1929) Monographisch-kritische Ubersicht der Gattung Aegilops. Rep Spec Nov Regni Veg Beih 55:1–228

    Google Scholar 

  8. Eilam T, Anikster Y, Millet E, Manisterski J, Sagi-Assif O, Feldman M (2007) Genome size and genome evolution in diploid Triticeae species. Genome 50(11):1029–1037

    CAS  Article  PubMed  Google Scholar 

  9. Feldman M, Kislev M (1977) Aegilops searsii, a new species of section Sitopsis (Platystachys). Israel J Bot 26(4):190–201

    Google Scholar 

  10. Furuta Y, Nishikawa K, Yamaguchi S (1986) Nuclear DNA content in diploid wheat and its relatives in relation to the phylogeny of tetraploid wheat. Jpn J Genet 61(2):97–105

    Article  Google Scholar 

  11. Giorgi D, D’Ovidio R, Tanzarella OA, Porceddu E (2002) RFLP analysis of Aegilops species belonging to the Sitopsis section. Genet Resour Crop Evol 49(2):145–151

    Article  Google Scholar 

  12. Goldreich Y (1994) The spatial distribution of annual rainfall in Israel—a review. Theor Appl Climatol 50(1–2):45–59

    Article  Google Scholar 

  13. Goryunova SV, Chikida NN, Kochieva EZ (2008) Molecular analysis of the phylogenetic relationships among the diploid Aegilops species of the section Sitopsis. Russ J Genet 44(1):115–118

    CAS  Article  Google Scholar 

  14. Grundbacher FJ (1963) The physiological function of the cereal awn. Bot Rev 29(3):366–381

    CAS  Article  Google Scholar 

  15. Hammer K (1980) Zur Taxonomie und Nomenklatur der Gattung Aegilops L. Feddes Rep 91(4):225–258

    Article  Google Scholar 

  16. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  17. Hijmans RJ, Guarino L, Bussink C, Mathur P, Cruz M, Barrentes I, Rojas E (2012) DIVA-GIS 7.5. A geographic information system for the analysis of species distribution data. http://www.diva-gis.org

  18. Hillel J, Simchen G, Feldman MW (1973) Mating systems and population structure in two closely related species of the wheat group. II. Environmental factors and population structure. Heredity 30:73–83

    Article  Google Scholar 

  19. Johnson RR, Willmer CM, Moss DN (1975) Role of awns in photosynthesis, respiration, and transpiration of barley spikes. Crop Sci 15(2):217–221

    Article  Google Scholar 

  20. Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S (1998a) RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101(1):91–95

    CAS  Article  Google Scholar 

  21. Kato K, Tanizoe C, Beiles A, Nevo E (1998b) Geographical variation in heading traits in wild Emmer wheat, Triticum dicoccoides. II. Variation in heading date and adaptation to diverse eco-geographical conditions. Hereditas 128(1):33–39

    Article  Google Scholar 

  22. Kihara H (1954) Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia 19(4):336–357

    Article  Google Scholar 

  23. Kilian B, Özkan H, Deusch O, Effgen S, Brandolini A, Kohl J, Salamini F (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24(1):217–227

    CAS  Article  PubMed  Google Scholar 

  24. Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Özkan H (2011) Aegilops. In: Wild crop relatives: genomic and breeding resources. Springer Berlin, pp 1–76

  25. Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162

    CAS  Article  PubMed  Google Scholar 

  26. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21(1):1–25

    Article  Google Scholar 

  27. Olivera PD, Steffenson BJ (2009) Aegilops sharonensis: origin, genetics, diversity, and potential for wheat improvement. Botany 87(8):740–756

    CAS  Article  Google Scholar 

  28. Olivera PD, Anikster Y, Steffenson BJ (2010) Genetic diversity and population structure in Aegilops sharonensis. Crop Sci 50(2):636–648

    CAS  Article  Google Scholar 

  29. Rafi MM, Ehdaie B, Waines JG (1992) Quality traits, carbon isotope discrimination and yield components in wild wheats. Ann Bot 69(5):467–474

    CAS  Article  Google Scholar 

  30. Roy RP (1959) Genome analysis of Aegilops sharonensis. Genetica 29(1):331–357

    Article  Google Scholar 

  31. Sasanuma T, Miyashita NT, Tsunewaki K (1996) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra-and interspecific variations of five Aegilops Sitopsis species. Theor Appl Genet 92(8):928–934

    CAS  Article  PubMed  Google Scholar 

  32. Sourdille P, Cadalen T, Gay G, Gill B, Bernard M (2002) Molecular and physical mapping of genes affecting awning in wheat. Plant Breed 121(4):320–324

    CAS  Article  Google Scholar 

  33. Tanaka M (1955) Chromosome pairing in hybrids between Aegilops sharonensis and some species of Aegilops and Triticum. Wheat Inf Serv 2:7–8

    Google Scholar 

  34. Team RC (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2012)

    Google Scholar 

  35. Teare ID, Sij JW, Waldren RP, Goltz SM (1972) Comparative data on the rate of photosynthesis, respiration, and transpiration of different organs in awned and awnless isogenic lines of wheat. Can J Plant Sci 52(6):965–971

    CAS  Article  Google Scholar 

  36. The International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788

    Article  Google Scholar 

  37. van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University Papers 94-7

  38. Volis S (2007) Correlated patterns of variation in phenology and seed production in populations of two annual grasses along an aridity gradient. Evol Ecol 21(3):381–393

    Article  Google Scholar 

  39. Waines JG, Rafi MM, Ehdaie B (1993) Yield components and transpiration efficiency in wild wheats. In: Damania AB (ed) Biodiversity and wheat improvement, Wiley, Chichester, pp 173–186

  40. Yamane K, Kawahara T (2005) Intra and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92(11):1887–1898

    CAS  Article  PubMed  Google Scholar 

  41. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100(10):6263–6268

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303(5664):1640–1644

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103(51):19581–19586

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank H. Yamaguchi, Y. Matsuoka, Y. Nakayama and K. Tanno for guidance and suggestions. We also thank Y. Yasui and the staff of the Laboratory of Crop Evolution for help with this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyoko Yamane.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 463 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ohta, A., Yamane, K. & Kawahara, T. Relationship between spike morphology and habitat of four Aegilops species of section Sitopsis. Genet Resour Crop Evol 64, 889–899 (2017). https://doi.org/10.1007/s10722-016-0408-x

Download citation

Keywords

  • Aegilops
  • Awn
  • Convergent evolution
  • GIS
  • Heading time
  • Natural habitat