Skip to main content

Genetic basis for folk classification of oca (Oxalis tuberosa Molina; Oxalidaceae): implications for research and conservation of clonally propagated crops

Abstract

Clonally propagated crops exhibit great diversity and are integral components of global and regional food systems. At the same time, little is known about the mechanisms that generate diversity within clonal crop species, and this diversity is increasingly threatened by economic, environmental, and social change. Research addressing the genetic basis for folk classification of clonal crops can address both of these challenges. Here, we carry out such research through a case study of the Andean tuber crop, oca (Oxalis tuberosa Molina). We employ ethnobotanical and molecular genetic methods to assess the congruence in partitioning of 216 oca accessions with respect to 26 folk taxa and with respect to 31 genetic clones. We find that the greatest number of folk taxa (11) correspond to single, unique genetic clones, but we also identify two instances of single folk taxa comprising multiple genetic clones and two instances of multiple folk taxa comprising single, shared genetic clones. We discuss the potential roles of different diversity-generating mechanisms, such as somaclonal variation and sexual reproduction, underlying these varied forms of congruence in order to inspire more directed research on this topic. We also discuss the implications of our findings on in situ and ex situ conservation work, in which practitioners often approximate crop genetic diversity by counting folk taxa. Ultimately, we argue that efforts to understand and conserve clonal crop diversity will be most effective when both folk classification and its genetic basis are considered together.

Resumen

Los cultivos propagados por clones muestran una gran diversidad y son componentes integrales de los sistemas alimentarios globales y regionales. Al mismo tiempo, se sabe poco sobre los mecanismos que generan la diversidad dentro de las especies de los cultivos clonales, y la amenaza a esta diversidad aumenta cada vez más por los cambios económicos, medioambientales y sociales. Ambos desafíos pueden abordarse con las investigaciones sobre la base genética de la clasificación campesina de los cultivos clonales. Por ello, se llevó a cabo esta investigación por medio de un estudio de caso del tubérculo andino, oca (Oxalis tuberosa Molina). Se empleó métodos etnobotánicos y genéticos moleculares para evaluar la congruencia de la clasificación de 216 entradas de oca con respeto a 26 taxones campesinos y a 31 clones genéticos. Se encontró que el número más alto de los taxones campesinos (11) corresponde a clones genéticos individuales y únicos, pero también se identificó dos casos en que los taxones campesinos individuales constan de múltiples clones genéticos y dos casos en que múltiples taxones campesinos constan de clones genéticos únicos y compartidos. Se discuten los roles potenciales de los distintos mecanismos de generación de la diversidad que subyacen estas formas variadas de la congruencia, como la variación somaclonal y la reproducción sexual, para incentivar más la investigación dirigida en este tema. También se discuten de las implicaciones de nuestros resultados en el los trabajos de conservación in situ y ex situ, en que es común aproximar la diversidad genética de cultivos por medio del conteo de los taxones campesinos. Por último, argumentamos que los esfuerzos por entender y conservar la diversidad de los cultivos clonales tendrán más éxito cuando se tome en cuenta la clasificación campesina junto con su base genética.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    Unless otherwise noted, from here forward, we use “generation” with respect to a clonal crop lifecycle. In other words, growth from a newly planted vegetative propagule constitutes a new generation. We use “inheritance” and “heritability” with respect to mitotic descendants. In other words, a genetic or epigenetic trait that is passed through a clonal lineage is inherited, or heritable.

References

  1. Academia Mayor de la Lengua Quechua (2005) Diccionario: Quechua-Español-Quechua, 2nd edn. Gobierno Regional Cusco, Cusco, Peru

    Google Scholar 

  2. Alexander PJ, Rajanikanth G, Bacon CD, Bailey CD (2007) Recovery of plant DNA using a reciprocating saw and silica-based columns. Mol Ecol Notes 7:5–9. doi:10.1111/j.1471-8286.2006.01549.x

    CAS  Article  Google Scholar 

  3. Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139. doi:10.1111/j.1365-294X.2007.03535.x

    CAS  Article  PubMed  Google Scholar 

  4. Babil PK, Yasuhara D, Sakaguchi K (2012) Recurring somaclonal variation as a factor of intra-specific diversity observed in Dioscorea alata L. Trop Agric Dev 56:71–79. doi:10.11248/jsta.56.71

    Google Scholar 

  5. Barthel S, Crumley C, Svedin U (2013) Bio-cultural refugia—safeguarding diversity of practices for food security and biodiversity. Global Environ Chang 23:1142–1152. doi:10.1016/j.gloenvcha.2013.05.001

    Article  Google Scholar 

  6. Bellon MR, Gotor E, Caracciolo F (2015a) Assessing the effectiveness of projects supporting on-farm conservation of native crops: evidence from the high Andes of South America. World Dev 70:162–176. doi:10.1016/j.worlddev.2015.01.014

    Article  Google Scholar 

  7. Bellon MR, Gotor E, Caracciolo F (2015b) Conserving landraces and improving livelihoods: how to assess the success of on-farm conservation projects. Int J Agric Sustain 13:167–182. doi:10.1080/14735903.2014.986363

    Article  Google Scholar 

  8. Berlin B, Breedlove DE, Raven PH (1973) General principles of classification and nomenclature in folk biology. Am Anthropol 75:214–242

    Article  Google Scholar 

  9. Bizuayehu T (2008) On Sidama folk identification, naming, and classification of cultivated enset (Ensete ventricosum) cultivars. Genet Resour Crop Evol 55:1359–1370. doi:10.1007/s10722-008-9334-x

    Article  Google Scholar 

  10. Bonnave M, Bleeckx G, Rojas Beltrán J, Maughan P, Flamand MC, Terrazas F, Bertin P (2014) Farmers’ unconscious incorporation of sexually-produced genotypes into the germplasm of a vegetatively-propagated crop (Oxalis tuberosa Mol.). Genet Resour Crop Evol 61:721–740. doi:10.1007/s10722-013-0068-z

    Article  Google Scholar 

  11. Bonnave M, Bleeckx T, Terrazas F, Bertin P (2015) Effect of the management of seed flows and mode of propagation on the genetic diversity in an Andean farming system: the case of oca (Oxalis tuberosa Mol.). Agric Human Values. doi:10.1007/s10460-015-9646-3

  12. Bonneuil C, Goffaux R, Bonnin I, Montalent P (2012) A new integrative indicator to assess crop genetic diversity. Ecol Indic 23:280–289. doi:10.1016/j.ecolind.2012.04.002

    Article  Google Scholar 

  13. Borgatti SP (1996) ANTHROPAC 4.0 methods guide. Analytic Technologies, Natick, MA

  14. Boster JS (1985) Selection for perceptual distinctiveness: evidence from Aguaruna cultivars of Manihot esculenta. Econ Bot 39:310–325. doi:10.1007/BF02858802

    Article  Google Scholar 

  15. Bradbury EJ (2014) Understanding toxic domesticates: biochemistry and population genetics of manioc (Manihot esculenta) and oca (Oxalis tuberosa). Dissertation, University of Wisconsin-Madison

  16. Bradbury EJ, Emshwiller E (2011) The role of organic acids in the domestication of Oxalis tuberosa: a new model for studying domestication resulting in opposing crop phenotypes. Econ Bot 65:76–84. doi:10.1007/s12231-010-9141-0

    CAS  Article  Google Scholar 

  17. Brush SB (1995) In situ conservation of landraces in centers of crop diversity. Crop Sci 35:346–354. doi:10.2135/cropsci1995.0011183X003500020009x

    Article  Google Scholar 

  18. Chang F, Qiu W, Zamar RH, Lazarus R, Wang X (2010) Clues: an R package for nonparametric clustering based on local shrinking. J Stat Softw. doi:10.18637/jss.v033.i04

    Google Scholar 

  19. Cleveland DA, Soleri D (2007) Extending Darwin’s analogy: bridging differences in concepts of selection between farmers, biologists, and plant breeders. Econ Bot 61:121–136. doi:10.1663/0013-0001(2007)61[121:EDABDI]2.0.CO;2

    Article  Google Scholar 

  20. Cortes Bravo H (1976) Evaluación de mutaciones somáticas espontáneas en oca (Oxalis tuberosa Mol.). Centro de Investigación en Cultivos Andinos (CICA), Universidad Nacional San Antonio Abad del Cusco, Cusco, Peru

  21. Dansi A, Mignouna HD, Zoundjihekpon J, Sangare A, Asiedu R, Quin FM (1999) Morphological diversity, cultivar groups and possible descent in the cultivated yams (Dioscorea cayenensis/D. rotundata) complex in Benin Republic. Genet Resour Crop Evol 46:371–378. doi:10.1023/A:1008698123887

    Article  Google Scholar 

  22. de Haan S, Bonierbale M, Ghislain M (2007) Indigenous biosystematics of Andean potatoes: folk taxonomy, descriptors and nomenclature. Presented at: 6th International Solanaceae Conference. Madison, WI

  23. Duputié A, Debain C, McKey D (2007) Natural hybridization between a clonally propagated crop, cassava (Manihot esculenta Crantz) and a wild relative in French Guiana. Mol Ecol 16:3025–3038. doi:10.1111/j.1365-294X.2007.03340.x

    Article  PubMed  Google Scholar 

  24. Elias M, Panaud O, Robert T (2000a) Assessment of genetic variability in a traditional cassava (Manihot esculenta Crantz) farming system, using AFLP markers. Heredity 85:219–230. doi:10.1046/j.1365-2540.2000.00749.x

    CAS  Article  PubMed  Google Scholar 

  25. Elias M, Rival L, McKey D (2000b) Perception and management of cassava (Manihot esculenta Crantz) diversity among Makushi Amerindians of Guyana (South America). J Ethnobiol 20:239–265

    Google Scholar 

  26. Elias M, Penet L, Vindry P, McKey D, Panaud O, Robert T (2001) Unmanaged sexual reproduction and the dynamics of genetic diversity of a vegetatively propagated crop plant, cassava (Manihot esculenta Crantz), in a traditional farming system. Mol Ecol 10:1895–1907. doi:10.1046/j.0962-1083.2001.01331.x

    CAS  Article  PubMed  Google Scholar 

  27. Emshwiller E (2002) Ploidy levels among species in the ‘Oxalis tuberosa alliance’ as inferred by flow cytometry. Ann Bot London 89:741–753. doi:10.1093/aob/mcf135

    Article  Google Scholar 

  28. Emshwiller E (2006) Evolution and conservation of clonally propagated crops. In: Motley TJ, Zerega N, Cross HB (eds) Darwin’s harvest: new approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 308–332

    Google Scholar 

  29. Emshwiller E, Theim T, Grau A, Nina V, Terrazas F (2009) Origins of domestication and polyploidy in oca (Oxalis tuberosa; Oxalidaceae). 3. AFLP data of oca and four wild, tuber-bearing taxa. Am J Bot 96:1839–1848. doi:10.3732/ajb.0800359

    CAS  Article  PubMed  Google Scholar 

  30. Evans GC (1972) The quantitative analysis of plant growth. University of California Press, California

    Google Scholar 

  31. FAO (2010). The second report on the state of the world’s plant genetic resources for food and agriculture, Rome. http://www.fao.org/docrep/013/i1500e/i1500e00.htm. Accessed 22 Oct 2015

  32. Galluzzi G, López Noriega I (2014) Conservation and use of genetic resources of underutilized crops in the Americas—a continental analysis. Sustainability 6:980–1017. doi:10.3390/su6020980

    Article  Google Scholar 

  33. Gibson RW (2009) A review of perceptual distinctiveness in landraces including an analysis of how its roles have been overlooked in plant breeding for low-input farming systems. Econ Bot 63:242–255. doi:10.1007/s12231-009-9086-3

    Article  Google Scholar 

  34. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19. doi:10.18637/jss.v022.i07

    Article  Google Scholar 

  35. Guaraguara KJ (2013) Establecimiento de un kit de microsatelites en oca (Oxalis tuberosa Molina) para estudios de diversidad genética. M. Sc. Thesis, Universidad Mayor de San Simón, Cochabamba, Bolivia

  36. Hubert L, Arabie P (1985) Comparing partitions. J Classif 2:193–218. doi:10.1007/BF01908075

    Article  Google Scholar 

  37. Jansky SH, Dawson J, Spooner DM (2015) How do we address the disconnect between genetic and morphological diversity in germplasm collections? Am J Bot 102:1213–1215. doi:10.3732/ajb.1500203

    CAS  Article  PubMed  Google Scholar 

  38. Jarvis DI, Brown AHD, Cuong PH, Collado-Panduro L, Latournerie-Moreno L, Gyawali S et al (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci 105:5326–5331. doi:10.1073/pnas.0800607105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Jarvis DI, Hodgkin T, Sthapit BR, Fadda C, Lopez-Noriega I (2011) An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. CRC Crit Rev Plant Sci 30:125–176. doi:10.1080/07352689.2011.554358

    Article  Google Scholar 

  40. Karamura D, Karamura E, Tushemereirwe W, Rubaihayo R (2010) Markham R (2010), Somatic mutations and their implications to the conservation strategies of the East African highland bananas (Musa spp.). Acta Hortic 879:615–621. doi:10.17660/ActaHortic.879.68

    Article  Google Scholar 

  41. Kizito EB, Chiwona-Karltun L, Egwang T, Fregene M, Westerbergh A (2007) Genetic diversity and variety composition of cassava on small-scale farms in Uganda: an interdisciplinary study using genetic markers and farmer interviews. Genetica 130:301–318. doi:10.1007/s10709-006-9107-4

    Article  Google Scholar 

  42. Lebot V, McKenna DJ, Johnston E, Zheng QY (1999) Morphological, phytochemical, and genetic variation in Hawaiian cultivars of’Awa (kava, Piper methysticum, Piperaceae). Econ Bot 53:407–418. doi:10.1007/BF02866720

    Article  Google Scholar 

  43. Malice M, Martin N, Pissard A, Rojas-Beltran JA, Gandarillas A, Bertin P, Baudoin J-P (2007) A preliminary study of the genetic diversity of Bolivian oca (Oxalis tuberosa Mol.) varieties maintained in situ and ex situ through the utilization of ISSR molecular markers. Genet Resour Crop Evol 54:685–690. doi:10.1007/s10722-006-9180-7

    Article  Google Scholar 

  44. Malice M, Bizoux JP, Blas R, Baudoin JP (2010) Genetic diversity of Andean tuber crop species in the in situ microcenter of Huanuco, Peru. Crop Sci 50:1915–1923. doi:10.2135/cropsci2009.09.0476

    CAS  Article  Google Scholar 

  45. McKey D, Elias M, Pujol B, Duputié A (2010) The evolutionary ecology of clonally propagated domesticated plants. New Phytol 186:318–332. doi:10.1111/j.1469-8137.2010.03210.x

    Article  PubMed  Google Scholar 

  46. Moscoe LJ, Emshwiller E (2015) Diversity of Oxalis tuberosa Molina: a comparison between AFLP and microsatellite markers. Genet Resour Crop Evol 62:335–347. doi:10.1007/s10722-014-0154-x

    CAS  Article  Google Scholar 

  47. Moscoe LJ, Emshwiller E (2016) Farmer perspectives on oca (Oxalis tuberosa Molina; Oxalidaceae) diversity conservation: values and threats. J Ethnobiol, in press

  48. Noyer JL, Causse S, Tomekpe K, Bouet A, Baurens FC (2005) A new image of plantain diversity assessed by SSR, AFLP and MSAP markers. Genetica 124:61–69. doi:10.1007/s10709-004-7319-z

    CAS  Article  PubMed  Google Scholar 

  49. Peroni N, Kageyama PY, Begossi A (2007) Molecular differentiation, diversity, and folk classification of “sweet” and “bitter” cassava (Manihot esculenta) in Caiçara and Caboclo management systems (Brazil). Genet Resour Crop Evol 54:1333–1349. doi:10.1007/s10722-006-9116-2

    Article  Google Scholar 

  50. Pissard A, Rojas Beltran JA, Faux AM, Paulet S, Bertin P (2008) Evidence of intra-varietal genetic variability in the vegetatively propagated crop oca (Oxalis tuberosa Mol.) in the Andean traditional farming system. Plant Syst Evol 270:59–74. doi:10.1007/s00606-007-0605-3

    Article  Google Scholar 

  51. Pujol B, Renoux F, Elias M, Rival L, McKey D (2007) The unappreciated ecology of landrace populations: conservation consequences of soil seed banks in cassava. Biol Cons 136:541–551. doi:10.1016/j.biocon.2006.12.025

    Article  Google Scholar 

  52. R Core Team (2015) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/. Accessed 1 Feb 2012

  53. Sadiki M, Jarvis DI, Rijal D, Bajracharya J, Hue NN, Camacho-Villa TC, Burgos-May LA et al (2010) Variety names: an entry point to crop genetic diversity and distribution in agroecosystems? In: Jarvis DI, Padoch D, Cooper HD (eds) Managing biodiversity in agricultural ecosystems. Bioversity international, New York, pp 34–76

    Google Scholar 

  54. Scott KD, Ablett EM, Lee LS, Henry RJ (2000) AFLP markers distinguishing an early mutant of Flame Seedless grape. Euphytica 113:243–247. doi:10.1023/A:1003977408214

    Article  Google Scholar 

  55. Scurrah M, Celis-Gamboa C, Chumbiauca S, Salas A, Visser RGF (2008) Hybridization between wild and cultivated potato species in the Peruvian Andes and biosafety implications for deployment of GM potatoes. Euphytica 164:881–892. doi:10.1007/s10681-007-9641-x

    Article  Google Scholar 

  56. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285. doi:10.1038/nrg2072

    CAS  Article  PubMed  Google Scholar 

  57. Soleri D, Worthington M, Aragón-Cuevas F, Smith SE, Gepts P (2013) Farmers’ varietal identification in a reference sample of local Phaseolus species in the Sierra Juárez, Oaxaca, Mexico. Econ Bot 67:283–298. doi:10.1007/s12231-013-9248-1

    Article  Google Scholar 

  58. Sorensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol Skrif 5:1–34

    Google Scholar 

  59. Steinley D (2004) Properties of the Hubert-Arabie adjusted Rand index. Psychol Methods 93:386–396. doi:10.1037/1082-989X.9.3.386

    Article  Google Scholar 

  60. Terrazas F, Valdivia G (1998) Spatial dynamics of in situ conservation: handling the genetic diversity of Andean tubers in mosaic systems Pl. Genet Res Newsl 114:9–15

    Google Scholar 

  61. Tesfaye B, Lüdders P (2003) Diversity and distribution patterns of enset landraces in Sidama, Southern Ethiopia. Genet Resour Crop Evol 50:359–371. doi:10.1023/A:1023918919227

    Article  Google Scholar 

  62. Trognitz BR, Hermann M, Carrión S (1998) Germplasm conservation of oca (Oxalis tuberosa Mol.) through botanical seed. Seed formation under a system of polymorphic incompatibility. Euphytica 101:133–141. doi:10.1023/A:1018336003573

    Article  Google Scholar 

  63. Turumaya AA (2011) Desarrollo de marcadores microsatélites para la caracterización de germoplasma en oca (Oxalis tuberosa Molina). M. Sc. Thesis, Universidad Mayor de San Simón, Cochabamba, Bolivia

  64. Vandenbroucke H, Mournet P, Vignes H, Chaïr H, Malapa R, Duval MF, Lebot V (2016) Somaclonal variants of taro (Colocasia esculenta Schott) and yam (Dioscorea alata L.) are incorporated into farmers’ varietal portfolios in Vanuatu. Genet Resour Crop Evol 63:495–511. doi:10.1007/s10722-015-0267-x

    Article  Google Scholar 

  65. Wright SD, McConnaughay KDM (2002) Interpreting phenotypic plasticity: the importance of ontogeny. Plant Spec Biol 17:119–131. doi:10.1046/j.1441

    Article  Google Scholar 

  66. Xu J, Yang Y, Pu Y, Ayad WG, Eyzaguirre PB (2001) Genetic diversity in taro (Colocasia esculenta Schott, Araceae) in China: an ethnobotanical and genetic approach. Econ Bot 55:14–31. doi:10.1007/BF02864543

    Article  Google Scholar 

Download references

Acknowledgments

Les agradecemos a los participantes de la comunidad de Viacha por su generosidad de tiempo y de conocimientos, con mención especial a la familia Maqque Ccoyo (Doña Berta, Don Visitación, Doña Vacilia, Analí, Sandra, y María Isabel). Les agradecemos también a los compañeros de Taray, especialmente a la familia Huamán Masi (Don Venancio, Doña Florencia, Roxana, e Hidalgo), por su gran ayuda en la chakra de oca. Además, gracias siempre a la familia Medina Noriega (Tulio, Consuelo, Masiel, Samira, Dina, y Lauren) por su apoyo y hospitalidad en Lima. Thank you to Marie Adams for technical advice regarding microsatellites; Jane Lee and Nikki Hare for laboratory assistance; Bret Larget for support with statistical analyses; Sarah Friedrich for assistance with figures; and members of the Emshwiller lab for encouragement at all stages of this research. We gratefully acknowledge our generous funding sources: University of Wisconsin-Madison Department of Botany (Judy Croxdale Award for Women in Science, Davis Research Grant, ON and EK Allen Fellowship), Latin American, Caribbean, and Iberian Studies Program (Nave Summer Field Research Grant), and Graduate School (Vilas Research Travel Grant); Sigma Delta Epsilon—Graduate Women in Science National Fellowship Program (Nell Mondy Fellowship) and Beta Chapter (Ruth Dickie Scholarship); and the Returned Peace Corps Volunteers of Wisconsin-Madison.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lauren J. Moscoe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

As described in Methods, we obtained written and/or oral permission to conduct research in Viacha from the community council and from each informant. Permissions were also obtained from Peru’s Instituto Nacional de Innovación Agraria (0284-2013-SUBDIRGEB-DIA/J and 0290-2013-SUBDIRGEB-DIA/J) and from the University of Wisconsin-Madison Education and Social/Behavioral Science Institutional Review Board (SE-2011-0201).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 328 kb)

Supplementary material 2 (PDF 266 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moscoe, L.J., Blas, R., Huamán Masi, D. et al. Genetic basis for folk classification of oca (Oxalis tuberosa Molina; Oxalidaceae): implications for research and conservation of clonally propagated crops. Genet Resour Crop Evol 64, 867–887 (2017). https://doi.org/10.1007/s10722-016-0407-y

Download citation

Keywords

  • Agrobiodiversity
  • Andean root and tuber crops
  • Clonal crops
  • In situ conservation
  • Microsatellites
  • Oxalis tuberosa
  • Traditional ecological knowledge

Palabras claves

  • Agrobiodiversidad
  • Conocimiento ecológico tradicional
  • Conservación in situ
  • Cultivos clonales
  • Microsatélites
  • Oxalis tuberosa
  • Raíces y tubérculos andinos