Skip to main content

Genetic studies regarding the control of seed pigmentation of an ancient European pointed maize (Zea mays L.) rich in phlobaphenes: the “Nero Spinoso” from the Camonica valley

Abstract

Several preclinical studies have suggested that the regular consumption of flavonoid-rich foods is associated to a reduced risk of chronic diseases. For this reason, in the last years a renewed interest for the ancient landraces rich in flavonoids or other bioactive molecules is growing. Preservation and valorisation of these ancient landraces is very important, not only for economic considerations regarding the farmers within the small rural communities, where the particular maize germplasm has been developed, but also from a scientific point of view. In this work we characterized the ancient cultivar named “Nero Spinoso” from the Camonica valley, the biggest valley in the north-west region of Lombardy (Italy). The peculiarity of this landrace is the colour and the pointed shape of the kernels. We showed after spectrophotometric and TLC analysis that this variety accumulates high amounts of phlobaphenes (320 A510/100 g flour). Genetic data demonstrate that phlobaphene pigmentation is under the control of a monogenic dominant gene. Further mapping and sequencing data showed that the pigmentation is driven by the presence of a strong allele of Pericarp 1 (P1) gene, a transcription factor belonging to the myb transcription factor gene family. The “Nero Spinoso” variety represents an ancient landrace that could be considered a real functional food and a useful tool in future breeding programmes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson EG (1924) Pericarp studies in maize II. The allelomorphism of a series of factors for pericarp color. Genetics 9:442–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson E, Cutler H (1942) Races of maize: their recognition and classification. Ann Mo Bot Gard 29:69–88

    Article  Google Scholar 

  • Bianchi A, Ghatnekar MV, Ghidoni A (1963) Knobs in Italian maize. Chromosoma 14:601–617

    Article  Google Scholar 

  • Brandolini A (1958) Il germoplasma del mais e la sua conservazione. Maydica 3:4–14

    Google Scholar 

  • Brandolini A, Brandolini A (2009) Maize introduction, evolution and diffusion in Italy. Maydica 54:233–242

    Google Scholar 

  • Casas MI, Duarte S, Doseff AI, Grotewold E (2014) Flavone-rich maize: an opportunity to improve the nutritional value of an important commodity crop. Front Plant Sci 5:440. doi:10.3389/fpls.2014.00440

    Article  PubMed  PubMed Central  Google Scholar 

  • Chopra S, Athma P, Peterson T (1996) Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements. Plant Cell 8:1149–1158. doi:10.1105/tpc.8.7.1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Dooner HK, Robbins TP, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Ann Rev Gen 25:173–199. doi:10.1146/annurev.ge.25.120191.001133

    Article  CAS  Google Scholar 

  • Eschholz TW, Stamp P, Peter R, Leipner J, Hund A (2010) Genetic structure and history of Swiss maize (Zea mays L. ssp. mays) landraces. Genet Resour Crop Evol 57:71–84

    Article  Google Scholar 

  • Falcone Ferreyra ML, Rodriguez E, Casas MI, Labadie G, Grotewold E, Casati P (2012) Identification of a bifunctional maize C- and O-glucosyltransferase. J Biol Chem 288:31678–31688

    Article  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780. doi:10.1146/annurev.arplant.57.032905.105248

    Article  CAS  PubMed  Google Scholar 

  • Grotewold E, Athma P, Peterson T (1991) Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors. Proc Natl Acad Sci USA 88(11):4587–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, Chandler VL (2000) Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor. Proc Natl Acad Sci USA 97:13579–13584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lago C, Landoni M, Cassani E, Doria E, Nielsen E, Pilu R (2013) Study and characterization of a novel functional food: purple popcorn. Mol Breed 31:575–585

    Article  CAS  Google Scholar 

  • Lago C, Cassani E, Zanzi C, Landoni M, Trovato R, Pilu R (2014a) Development and study of a maize cultivar rich in anthocyanins: coloured polenta, a new functional food. Plant Breed. 133:210–217

    Article  CAS  Google Scholar 

  • Lago C, Landoni M, Cassani E, Attanasiu S, Cantaluppi E, Pilu R (2014b) Development and characterization of a coloured sweet corn line as a new functional food. Maydica 59:191–200

    Google Scholar 

  • Lago C, Landoni M, Cassani E, Cantaluppi E, Doria E, Nielsen E, Giorgi A, Pilu R (2015) Study and characterization of an ancient European flint white maize rich in anthocyanins: Millo Corvo from Galicia. PLoS ONE 10(5):e0126521. doi:10.1371/journal.pone.0126521

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Martinez LX, Oliart-Ros RM, Valerio-Alfaro G, Lee CH, Parkin KL, Garcia HS (2009) Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci Technol 42:1187–1192

    Article  CAS  Google Scholar 

  • Mangelsdorf PC, Reeves RG (1959) The origin of com. III. Modern races, the product of teosinte introgression. Bot Mus LeaH Harvard Univ 18:389–411

    Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMullen MD, Kross H, Snook ME, Cortés-Cruz M, Houchins KE, Musket TA, Coe EH Jr (2004) Salmon silk genes contribute to the elucidation of the flavone pathway in maize (Zea mays L.). J Hered 95(3):225–233. doi:10.1093/jhered/esh042

    Article  CAS  PubMed  Google Scholar 

  • Messedaglia L (1924) Notizie storiche sul mais. Quaderno mensile No. 7. Sez. Credito Agrario Istituto Federale Credito del Risorgimento delle Venezie, Verona, Italy

  • Mir C, Zerjal T, Combes V, Dumas F, Madur D, Bedoya C, Dreisigacker S, Franco J, Grudloyma P, Hao PX, Hearne S, Jampatong C, Laloë D, Muthamia Z, Nguyen T, Prasanna BM, Taba S, Xie CX, Yunus M, Zhang S, Warburton ML, Charcosset A (2013) Out of America: tracing the genetic footprints of the global diffusion of maize. Theor Appl Genet 126:2671–2682

    Article  CAS  PubMed  Google Scholar 

  • Morohashi K, Casas MI, Falcone Ferreyra ML, Mejía-Guerra MK, Pourcel L, Yilmaz A, Feller A, Carvalho B, Emiliani J, Rodriguez E, Pellegrinet S, McMullen M, Casati P, Grotewold E (2012) A genome-wide regulatory framework identifies maize Pericarp Color1 controlled genes. Plant Cell 24(7):2745–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroni K, Pilu R, Tonelli C (2014) Anthocyanins in corn: a wealth of genes for human health. Planta 240:901–911

    Article  CAS  PubMed  Google Scholar 

  • Pilu R, Piazza P, Petroni K, Ronchi A, Martin C, Tonelli C (2003) pl-bol3, a complex allele of the anthocyanin regulatory pl1 locus that arose in a naturally occurring maize population. Plant J 36:510–521

    Article  CAS  PubMed  Google Scholar 

  • Pilu R, Cassani E, Sirizzotti A, Petroni K, Tonelli C (2011) Effect of flavonoid pigments on the accumulation of fumonisin B1 in the maize kernel. J Appl Genet 52(2):145–152

    Article  CAS  PubMed  Google Scholar 

  • Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci USA 106:5019–5024. doi:10.1073/pnas.0812525106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranere AJ, Piperno DR, Holst I, Dickau R, Iriarte J (2009) Preceramic human occupation of the Central Balsas Valley, Mexico: cultural context of early domesticated maize and squash. Proc Natl Acad Sci USA 106:5014–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez VM, Soengas P, Landa A, Ordas A, Revilla P (2013) Effects of selection for color intensity on antioxidant capacity in maize (Zea mays L.). Euphytica 193:339–345

    Article  CAS  Google Scholar 

  • Sampietro DA, Fauguel CM, Vattuone MA, Presello DA, Catalán CAN (2013) Phenylpropanoids from maize pericarp: resistance factors to kernel infection and fumonisin accumulation by Fusarium verticillioides. Eur J Plant Pathol 135:105–113

    Article  CAS  Google Scholar 

  • Styles ED, Ceska O (1977) The genetic control of flavonoid synthesis in maize. Can J Genet Cytol 19:289–302

    Article  CAS  Google Scholar 

  • van Heerwaarden J, Doebley J, Briggs W, Glaubitz CJ, Goodman M, Gonzalez JDS, Ross-Ibarra J (2011) Genetic signals of origin, spread, and introgression in a large sample of a maize landraces. Proc Natl Acad Sci USA 108:1088–1092. doi:10.1073/pnas.1013011108

    Article  PubMed  Google Scholar 

  • Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sanchez GJ, Doebley J (2008) Population structure and genetic diversity of New World maize races assessed by microsatellites. Am J Bot 95:1240–1253

    Article  PubMed  Google Scholar 

  • Warburton ML, Reif JC, Frisch M, Bohn M, Bedoya C, Xia XC, Crossa J, Franco J, Hoisington D, Pixley K, Taba S, Melchinger AE (2008) Genetic diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated varieties, and inbred lines. Crop Sci 48(2):617–624. doi:10.2135/cropsci2007.02.0103

    Article  Google Scholar 

  • West CE, Eilander A, van Lieshout M (2002) Consequences of revised estimates of carotenoid bioefficacy for dietary control of vitamin A deficiency in developing countries. J Nutr 132:2920S–2926S

    CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126(2):485–493. doi:10.1104/pp.126.2.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilic S, Serpen A, Akıllıoglu G, Vural Gokmen V, Vancetovic J (2012) Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J Agric Food Chem 60:1224–1231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Davide Reginelli and Dr. Mariarosa Buffoli for their hard work in the field and Dr. Lesley Currah for her editing and suggestions. This study was partly supported by “Accordo di Programma, affermazione in Edolo del Centro di Eccellenza Università della Montagna” MIUR-Università degli Studi di Milano, Prot. No. 386 1293-05/08/2011 and by Fondazione della Comunità Bresciana-Onlus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pilu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Elena Cassani and Daniel Puglisi have been contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassani, E., Puglisi, D., Cantaluppi, E. et al. Genetic studies regarding the control of seed pigmentation of an ancient European pointed maize (Zea mays L.) rich in phlobaphenes: the “Nero Spinoso” from the Camonica valley. Genet Resour Crop Evol 64, 761–773 (2017). https://doi.org/10.1007/s10722-016-0399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-016-0399-7

Keywords