Genetic Resources and Crop Evolution

, Volume 64, Issue 2, pp 405–418 | Cite as

Characterization of indicajaponica subspecies-specific InDel loci in wild relatives of rice (Oryza sativa L. subsp. indica Kato and subsp. japonica Kato)

Research Article
  • 329 Downloads

Abstract

Insertion/deletion (InDel) polymorphisms are generally irreversible and, thus, are useful for evaluating the genetic relationships within the genus Oryza. Moreover, subspecies-specific (SS) InDel markers linked to conserved genomic regions specific to the indica and japonica subspecies of Oryza sativa can provide insight into the genetic relationships between cultivated and wild rice. The evolutionary relationship among Oryza species in respect to their indica and japonica alleles was investigated using 67 selected indicajaponica InDel SS-STS primers across 290 accessions, including 61 Asian cultivated rice (O. sativa) cultivars, 27 African cultivated rice (O. glaberrima) accessions, and 202 accessions of wild Orzya species. The average SS allele frequency of the various Oryza species, from AA-genome to BB ~ EE, and FF ~ HHKK showed an increased proportion of non-O. sativa and null alleles in the more distantly related wild species. Most of the wild species, except the more distant EE, GG, HHJJ, and HHKK genome accessions, consisted of relatively more indica than japonica alleles of SS markers. To validate the SS-STS study, PCR products of nine markers were sequenced across 24–33 accessions. Sequencing results revealed that Oryza species share indica or japonica-like conserved InDel regions even across the different genomes. The presence of some japonica alleles beyond the AA genome at some SS InDel loci also suggests that japonica-specific alleles occurred early in the history of the Oryza genus. The O. sativa sub-species specific markers thus provide further insight into the evolutionary pathway in the genus Oryza and the process of differentiation between indica and japonica.

Keywords

indicajaponica Insertion-deletion markers Oryza Subspecies-specific markers Wild rice 

Notes

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (Plant Molecular Breeding Center, No. PJ01102401), Rural Development Administration, Republic of Korea and support from the Global Rice Science Partnership (GRiSP) to the International Rice Research Institute. The authors thank Christine Jade Dilla-Ermita, Joie Ramos and Eleazar Manalaysay for providing technical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This research does not involve human participants or animals.

Supplementary material

10722_2016_368_MOESM1_ESM.xlsx (32 kb)
Supplementary material 1 (XLSX 32 kb)
10722_2016_368_MOESM2_ESM.xlsx (70 kb)
Supplementary material 2 (XLSX 70 kb)
10722_2016_368_MOESM3_ESM.pdf (99 kb)
Supplementary material 3 (PDF 98 kb)
10722_2016_368_MOESM4_ESM.xlsx (110 kb)
Supplementary material 4 (XLSX 110 kb)
10722_2016_368_MOESM5_ESM.pdf (136 kb)
Supplementary material 5 (PDF 136 kb)
10722_2016_368_MOESM6_ESM.pdf (126 kb)
Supplementary material 6 (PDF 125 kb)
10722_2016_368_MOESM7_ESM.pdf (65 kb)
Supplementary material 7 (PDF 64 kb)
10722_2016_368_MOESM8_ESM.pdf (824 kb)
Supplementary material 8 (PDF 823 kb)
10722_2016_368_MOESM9_ESM.pdf (124 kb)
Supplementary material 9 (PDF 123 kb)

References

  1. Brar DS, Khush GS (2002) Transferring genes from wild species into rice. In: Kang MS (ed) Quantitative genetics, genomics, and plant breeding. CAB International, Wallingford, pp 197–217Google Scholar
  2. Chang TT (1976) The origin, evolution, cultivation, dissemination, and diversification of Asian and African rices. Euphytica 25:425–441CrossRefGoogle Scholar
  3. Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75CrossRefPubMedGoogle Scholar
  4. Chin JH, Kim HH, Jiang WZ, Chu SH, Woo MO, Han LZ, Brar DS, Koh HJ (2007) Identification of subspecies-specific STS markers and their association with segregation distortion in rice (Oryza sativa L.). J Crop Sci Biotech 10:175–184Google Scholar
  5. Degenkolbe T, Do PT, Zuther E, Repsilber D, Walther D, Hincha DK, Köhl K (2009) Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol 69:133–153CrossRefPubMedGoogle Scholar
  6. Edwards JD, Lee VM, McCouch SR (2004) Sources and predictors of resolvable indel polymorphism assessed using rice as a model. Mol Gen Genomics 271:298–307CrossRefGoogle Scholar
  7. Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies Indica and Japonica genome alignments. Genome Res 14:1812–1819CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot-Lond 100:903–924CrossRefGoogle Scholar
  9. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hamdi H, Nishio H, Zielinski R, Dugaiczyk A (1999) Origin and phylogenetic distribution of Alu DNA repeats: irreversible events in the evolution of primates. J Mol Biol 289:861–871CrossRefPubMedGoogle Scholar
  11. Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Lei Zhang, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayash T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501CrossRefPubMedGoogle Scholar
  12. Izawa T (2008) The process of rice domestication: a new model based on recent data. Rice 1:127–134CrossRefGoogle Scholar
  13. Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16:147–156CrossRefPubMedGoogle Scholar
  14. Kim BS, Jiang W, Koh HJ (2009) Genetic diversity of rice collections using subspecies-specific STS markers. Korean J Breed Sci 41:101–105Google Scholar
  15. Kovach MJ, McCouch SR (2008) Leveraging natural diversity: back through the bottleneck. Curr Opin Plant Biol 11:193–200CrossRefPubMedGoogle Scholar
  16. Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends Genet 23:578–587CrossRefPubMedGoogle Scholar
  17. Li C, Zhou A, Sang T (2006) Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170:185–194CrossRefPubMedGoogle Scholar
  18. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129CrossRefPubMedGoogle Scholar
  19. Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Natl Acad Sci USA 103:9578–9583CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lu F, Ammiraju JSS, Sanyalc A, Zhanga S, Song R, Chena J, Lia G, Suia Y, Song X, Chenga Z, de Oliveira AC, Bennetzen JL, Jackson SA, Wing RA, Chena M (2009) Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes. Proc Natl Acad Sci USA 106:2071–2076CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410CrossRefPubMedPubMedCentralGoogle Scholar
  22. Marathi B, Ramos J, Hechanova SL, Oane RH, Jena KK (2015) SNP genotyping and characterization of pistil traits revealing a distinct phylogenetic relationship among the species of Oryza. Euphytica 201:131–148CrossRefGoogle Scholar
  23. McCouch SR, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan LP, Ahn SN (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339CrossRefGoogle Scholar
  24. Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A et al (2011) Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA 108:8351–8356CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nishikawa T, Vaughan DA, Kasdowaki KI (2005) Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flaking nucleotide sequences from the mitochondrial and chloroplast genomes. Theor Appl Genet 1100:696–705CrossRefGoogle Scholar
  26. Pal S, Jain S, Jain RK (2001) DNA isolation from milled rice samples for PCR based molecular marker analysis. Rice Genet News 18:94Google Scholar
  27. Purugganan MD (2010) The evolution of rice: molecular vignettes on its origins and spread. Archaeol Anthropol Sci 2:61–68CrossRefGoogle Scholar
  28. Rogozin IB, Thomson K, Csürös M, Carmel L, Koonin EV (2008) Homoplasy in genome-wide analysis of rare amino acid replacements: the molecular-evolutionary basis for Vavilov’s law of homologous series. Biol Direct 3:7CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rokas A, Holland WH (2000) Rare genomic changes as a tool for phylogenetics. TREE 15:454–459PubMedGoogle Scholar
  30. Sang T, Ge S (2007) Genetics and phylogenetics of rice domestication. Curr Opin Genet Dev 17:533–538CrossRefPubMedGoogle Scholar
  31. Sang T, Ge S (2013) Understanding rice domestication and implications for cultivar improvement. Curr Opin Plant Biol 16:139–146CrossRefPubMedGoogle Scholar
  32. Stec I, Nagl SB, Ommen GJBV, Dunnen JTD (2000) The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473:1–5CrossRefPubMedGoogle Scholar
  33. Sweeney M, McCouch SR (2007) The complex history of the domestication of rice. Ann Bot 100:951–957CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  35. Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712CrossRefGoogle Scholar
  36. Thomson MJ, Zhao K, Wright M, McNally KL, Rey J, Tung CW, Reynolds A, Scheffler B, Eizenga G, McClung A, Kim H, Ismail AM, de Ocampo M, Mojica C, Reveche MY, Dilla-Ermita CJ, Mauleon R, Leung H, Bustamante C, McCouch SR (2012) High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Mol Breed 29:875–886Google Scholar
  37. Vaughan DA, Morishima H, Kadowaki K (2003) Diversity in the Oryza genus. Curr Opin Plant Biol 6:139–146CrossRefPubMedGoogle Scholar
  38. Vaughan DA, Kadowaki K, Kaga A, Tomooka N (2005) On the phylogeny and biogeography of the Genus Oryza. Breed Sci 55:113–122CrossRefGoogle Scholar
  39. Vaughan DA, Balas ZS, Heslop-Harrison JS (2007) From crop domestication to super-domestication. Ann Bot 100:893–901CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vaughan DA, Lu BR, Tomooka N (2008a) Was Asian rice (Oryza sativa) domesticated more than once? Rice 1:16–24CrossRefGoogle Scholar
  41. Vaughan DA, Lu BR, Tomooka N (2008b) The evolving story of rice evolution. Plant Sci 174:394–408CrossRefGoogle Scholar
  42. Vitte C, Ishii T, Lamy F, Brar D, Panaud O (2004) Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol Genet Genomics 272:504–511CrossRefPubMedGoogle Scholar
  43. Wang MX, Zhang HL, Zhang DL, Qi YW, Fan ZL, Li DY, Pan DJ, Cao YS, Qiu ZE, Yu P, Yang QW, Wang XK, Li ZC (2008) Genetic structure of Oryza rufipogon Griff. in China. Heredity 101:527–535CrossRefPubMedGoogle Scholar
  44. Xie X, Molina J, Hermamadez R, Reynolds A, Boyko AR, Bustamanta CD, Purugganan MD (2011) Levels and patterns of nucleotide variation in domestication STL regions on rice chromosome 3 suggest lineage specific selection. PLoS ONE 6:e20670CrossRefPubMedPubMedCentralGoogle Scholar
  45. Yang CC, Kawahara Y, Mizuno H, Wu J, Matsumoto T, Itoh T (2012) Independent domestication of Asian rice followed by gene flow from japonica to indica. Mol Biol Evol 29:1471–1479CrossRefPubMedGoogle Scholar
  46. Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Ali ML, Tung CW, Reynolds A, Bustamante CD, McCouch SR (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS ONE 5:e10780CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zong Y, Chen Z, Innes JB, Chen C, Wang Z, Wang H (2007) Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 449:459–462CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Plant Breeding, Genetics and BiotechnologyInternational Rice Research InstituteManilaPhilippines
  2. 2.Division of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
  3. 3.Division of Agriculture, College of Plant ScienceJilin UniversityChangchunChina
  4. 4.Department of Soil and Crop SciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations