Genetic Resources and Crop Evolution

, Volume 64, Issue 2, pp 379–390 | Cite as

The coexistence of oleaster and traditional varieties affects genetic diversity and population structure in Algerian olive (Olea europaea) germplasm

  • S. Boucheffa
  • M. M. Miazzi
  • V. di Rienzo
  • G. Mangini
  • V. Fanelli
  • A. Tamendjari
  • D. Pignone
  • C. Montemurro
Research Article


The present work was aimed at assessing the genetic diversity of 42 local cultivars and oleaster genotypes from the area of Bejaia in Algeria. Fifteen highly polymorphic Simple Sequence Repeat markers were evaluated and proved to be very informative, producing a total number of 160 alleles with an average value of 10.7 per locus; the SSRs DCA09 and DCA16 were the most informative, distinguishing 17 and 19 genotypes, respectively. Phylogenetic and population structure analysis split the accessions in two main groups corresponding to most of oleasters and most of traditional varieties, respectively. Interestingly, ten traditional varieties resulted strictly related to the oleasters, indicating hybridization between the two botanical varieties. Genetic parameters and private alleles of groups confirmed this observation and indicated a wide genetic variability in Algerian olive germplasm. The results suggest the need to preserve and characterize this germplasm in order to limit the risk of losing potential important genetic traits present in the crop wild relatives.


Algerian local cultivars Genetic structure Microsatellite markers Oleasters Olea europaea 



This work has been carried out with financial support from the University of Bari-Projects: Idea Giovani 2010/11, Fondo Ateneo 2012, and Cofin PRIN 2009, coordinated by Dr. Cinzia Montemurro. We are also grateful to Dr. Stacey L. Harmer for the English revision of the present manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they do not have competing and conflicting interests.

Supplementary material

10722_2016_365_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)


  1. Abdelguerfi A, Laouar M, Abbas K et al (2012) Development of agro forestry areas in Northern Algeria to improve pastoral production. In: Acar Z, López-Francos A, Porqueddu C (eds) New approaches for grassland research in a context of climate and socioeconomic changes. Zaragoza: CIHEAM, 2012. p. 319-322 (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 102)Google Scholar
  2. Algerian Ministry of Agriculture (2009)
  3. Baali-Cherif D, Besnard G (2005) High genetic diversity and clonal growth in relict populations of Olea europaea subsp. laperrinei (Oleaceae) from Hoggar, Algeria. Ann Bot 96:823–830CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baldoni L, Cultrera NG, Mariotti R et al (2009) A consensus list of microsatellite markers for olive genotyping. Mol Breed 24:213–231CrossRefGoogle Scholar
  5. Belaj A, Munoz-Diez C, Baldoni L, Porceddu A, Barranco D, Satovic Z (2007) Genetic diversity and population structure of wild olives from North-Western Mediterranean assessed by SSR markers. Ann Bot 100:449–458CrossRefPubMedPubMedCentralGoogle Scholar
  6. Belaj A, León L, Satovic Z, de la Rosa R (2011) Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agro-morphological traits and SSR markers. Sci Hortic 129:561–569CrossRefGoogle Scholar
  7. Besnard G, Bervillé A (2000) Multiple origins for Mediterranean olive (Olea europaea L. ssp. europaea) based upon mitochondrial DNA polymorphisms. Cr Acad Sci III-Vie 323:173–181CrossRefGoogle Scholar
  8. Besnard G, Baradat P, Bervillé A (2001) Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor Appl Genet 102:251–258CrossRefGoogle Scholar
  9. Breton C, Tersac M, Bervillé A (2006a) Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive, several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J Biogeogr 33:1916–1928CrossRefGoogle Scholar
  10. Breton C, Médail F, Pinatel C, Bervillé A (2006b) De l’olivier à l’oléastre: origine et domestication de l’Olea europaea L. dans le Bassin méditerranéen. Cahiers Agric 15(4):329–336Google Scholar
  11. Bronzini de Carrafa V, Maury J, Gambotti C, Breton C, Berville A, Giannetini J (2002) Mitochondrial DNA variation and RAPD mark oleasters, olive and feral olives from Western and Eastern Mediterranean. Theor Appl Genet 104:1209–1216CrossRefGoogle Scholar
  12. Carriero F, Fontanazza G, Cellini F, Giorio G (2002) Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor Appl Genet 104:301–307CrossRefPubMedGoogle Scholar
  13. Chaux C (1955) Méthodes de recherches adoptées en matière de biologie florale de l’olivier-fruits et primeurs de l’Afrique du nord. Dissertation, University of OranGoogle Scholar
  14. Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104:223–228CrossRefPubMedGoogle Scholar
  15. Contento A, Ceccarelli M, Gelati MT, Maggini F, Baldoni L, Cionini PG (2002) Diversity of Olea genotypes and the origin of cultivated olives. Theor Appl Genet 104:1229–1238CrossRefPubMedGoogle Scholar
  16. Dabbou S, Issaoui M, Servili M, Taticchi A, Sifi S, Montedoro GF, Hammami M (2009) Characterisation of virgin olive oils from European olive cultivars introduced in Tunisia. Eur J Lipid Sci Technol 111(4):392CrossRefGoogle Scholar
  17. De Casas RR, Besnard G, Schönswetter P, Balaguer L, Vargas P (2006) Extensive gene flow blurs phylogeographic but not phylogenetic signal in Olea europaea L. Theor Appl Genet 113:575–583CrossRefGoogle Scholar
  18. De La Rosa R, James CM, Tobutt KR (2002) Isolation and characterization of polymorphic microsatellites in olive (Olea europaea L.) and their transferability to other genera in the Oleaceae. Mol Ecol Notes 2:265–267CrossRefGoogle Scholar
  19. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRefGoogle Scholar
  20. Dominguez-Garcia MC, Laib M, de la Rosa R, Belaj A (2012) Characterisation and identification of olive cultivars from North-eastern Algeria using molecular markers. J Hortic Sci Biotech 87:95–100CrossRefGoogle Scholar
  21. Douzane M, Tamendjari A, Abdi AK, Daas MS, Mehdid F, Bellal MM (2013) Phenolic compounds in mono-cultivar extra virgin olive oils from Algeria. Grasas Aceites 64:285–294CrossRefGoogle Scholar
  22. Erre P, Chessa I, Munoz-Diez C, Belaj A, Rallo L, Trujillo I (2010) Genetic diversity and relationships between wild and cultivated olives in Sardinia as assessed by SSR markers. Genet Resour Crop Evol 57:41–54CrossRefGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  24. Fernández i Martí A, Font i Forcada C, Socias i Company R, Rubio-Cabetas MJ (2014) Genetic relationships and population structure of local olive tree accessions from Northeastern Spain revealed by SSR markers. Acta Physiol Plant 37:1726. doi: 10.1007/s11738-014-1726-2 CrossRefGoogle Scholar
  25. Green PS (2002) A revision of Olea L. (Oleaceae). Kew Bull 57:91–140CrossRefGoogle Scholar
  26. Hauville A (1953) La répartition des variétés d’olivers en Algérie et ses conséquences pratiques. Bulletin de la Société des Agriculteurs d’ Álgérie, p 580Google Scholar
  27. Hosseini-Mazinani M, Mariotti R, Torkzaban B et al (2014) High genetic diversity detected in olives beyond the boundaries of the Mediterranean sea. PLoS ONE 9(4):e93146. doi: 10.1371/journal.pone.0093146 CrossRefPubMedPubMedCentralGoogle Scholar
  28. INRAA (2006)
  29. Khadari B, Charafi J, Moukhli A, Ater M (2008) Substantial genetic diversity in cultivated Moroccan olive despite a single major cultivar: a paradoxical situation evidenced by the use of SSR loci. Tree Genet Genomes 4:213CrossRefGoogle Scholar
  30. Klepo T, De la Rosa R, Satovic Z, León L, Belaj A (2013) Utility of wild germplasm in olive breeding. Sci Hortic 152:92–101CrossRefGoogle Scholar
  31. Kloosterman AD, Budowle B, Daselaar P (1993) PCR-amplification and detection of the human D1S80 VNTR locus. Amplification conditions, population genetics and application in forensic analysis. Int J Leg Med 105:257–264CrossRefGoogle Scholar
  32. León L, De la Rosa R, Barranco D, Rallo L (2007) Breeding for early bearing in olive. HortScience 422:499–502Google Scholar
  33. Lopes MS, Mendoca D, Sefc KM, Sabino Gil F, Da Camara Machado A (2004) Genetic evidence of intra-cultivar variability within Iberian olive cultivars. HortScience 39:1562–1565Google Scholar
  34. Lumaret R, Ouazzani N, Michuad H, Vivier G et al (2004) Allozyme variation of oleaster populations (wild olive tree) (Olea europaea L.) in the Mediterranean basin. Heredity 92:343–351CrossRefPubMedGoogle Scholar
  35. Mendil M, Sebai A (2006) Catalogue des Variété Algériennes de l’Olivier. Ministère de l’agriculture et du développement rural, ITAF Alger, Algeria, p 98Google Scholar
  36. Muzzalupo I, Stefanizzi F, Salimonti A, Falabella R, Perri E (2009) Microsatellite markers for identification of a group of Italian olive accessions. Sci Agric 66:685–690CrossRefGoogle Scholar
  37. Muzzalupo I, Chiappetta A, Benincasa C, Perri P (2010) Intra-cultivar variability of three major olive cultivars grown in different areas of central-southern Italy and studied using microsatellite markers. Sci Hortic 126(32446):3Google Scholar
  38. Noormohammadi Z, Hosseini-Mazinani M, Trujillo I, Ratio L, Belaj A, Sadeghizadeh M (2007) Identification and classification of main Iranian olive cultivars using microsatellite markers. Hortic Sci 42:1545–1550Google Scholar
  39. Pasqualone A, di Rienzo V, Blanco A, Summo C, Caponio F, Montemurro C (2012) Characterization of virgin olive oil from Leucocarpa cultivar by chemical and DNA analysis. Food Res Int 47:188–193CrossRefGoogle Scholar
  40. Pasqualone A, di Rienzo V, Nasti R, Blanco A, Gomes T, Montemurro C (2013) Traceability of PDO Italian table olives by means of microsatellite molecular markers. J Agric Food Chem 61:3068–3073. doi: 10.1021/jf400014g CrossRefPubMedGoogle Scholar
  41. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  42. Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato accession. Theor Appl Gen 98:107–112CrossRefGoogle Scholar
  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  44. Rohlf FJ (1998) NTSYSpc: numerical taxonomy and multivariate analysis system. Version 2.02. Exeter Software, Setauket, New YorkGoogle Scholar
  45. Rugini E, Lavee S (1992) Olive. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CAB International, Wallingford, pp 371–382Google Scholar
  46. Sabetta W, Alba V, Blanco A, Montemurro C (2011) sunTILL: a TILLING resource for gene function analysis in sunflower. Plant Methods 7:20. doi: 10.1186/1746-4811-7-20 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sarri V, Baldoni L, Porceddu A, Cultrera NG, Contento A, Frediani M, Belaj A, Trujillo I, Cionini PG (2006) Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome 49:1606–1615CrossRefPubMedGoogle Scholar
  48. Sefc KM, Lopes MS, Mendonça D, Rodrigues Dos Santos M, Da Camara Machado M, Da Camara Machado A (2000) Identification of microsatellites loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees. Mol Ecol 9:1171–1173CrossRefPubMedGoogle Scholar
  49. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471CrossRefPubMedPubMedCentralGoogle Scholar
  50. Terral JF, Alonso N, Chatti N, Fabre L, Fiorentino G, Marinval P, Jordá GP, Prada B, Rovira N, Alibert P (2004) Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J Biogeogr 31:63–77CrossRefGoogle Scholar
  51. Vossen P (2007) Olive oil: history, production, and characteristics of the world's classic oils. HortScience 42(5):1093–1100Google Scholar
  52. Yoruk B, Taskin V (2014) Genetic diversity and relationships of wild and cultivated olives in Turkey. Plant Syst Evol 300:1247–1258CrossRefGoogle Scholar
  53. Zohary D, Hopf M (1994) Domestication of plants in the Old World, 2nd edn. Oxford Clarendon Press, pp 137–442.

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • S. Boucheffa
    • 1
  • M. M. Miazzi
    • 2
  • V. di Rienzo
    • 2
    • 3
  • G. Mangini
    • 2
  • V. Fanelli
    • 2
  • A. Tamendjari
    • 1
  • D. Pignone
    • 4
  • C. Montemurro
    • 2
    • 3
  1. 1.Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la VieUniversité de BejaiaBejaïaAlgeria
  2. 2.Department of Soil, Plant and Food Sciences (DI.S.S.P.A.)University of BariBariItaly
  3. 3.Spin Off SINAGRI s.r.l.BariItaly
  4. 4.National Council of Research of ItalyInstitute of Biosciences and BioresourcesBariItaly

Personalised recommendations