Genetic Resources and Crop Evolution

, Volume 63, Issue 3, pp 401–407 | Cite as

Development and validation of chloroplast DNA markers to assist Aegilops geniculata and Aegilops neglecta germplasm management

  • Patricia Giraldo
  • Magdalena Ruiz
  • Marta Rodríguez-Quijano
  • Elena Benavente
Short Communication

Abstract

The genus Aegilops includes a number of wheat wild relatives representing a valuable gene pool for stress adaptive traits. Collection of new accessions and proper management of Aegilops germplasm is thus essential for wheat improvement progress. Among the most worldwide distributed Aegilops species, A. geniculata Roth (2n = 4x = 28), A. neglecta Req. ex Bertol. (subsp. neglecta; 2n = 4x = 28) and A. recta (Zhuk.) Chen. (syn. A. neglecta Req. ex Bertol. subsp. recta (Zhuk.) Hammer; 2n = 6x = 42) are particularly difficult to distinguish each other because of their high morphological and genomic similarities. Based on their distinct cytoplasmic lineage, we have developed two chloroplast DNA-based molecular markers that accurately discriminate A. geniculata from A. neglecta and A. recta. The use of these markers, aided by chromosome counting to differentiate A. neglecta from A. recta, has allowed to assess the accuracy of species assignment in 125 accessions from Germplasm Genebank collections and recent collecting expeditions. This study has revealed taxonomic mistakes or inaccuracies in 18 % of the entries examined. The ambiguous use of the same species name for the allotetraploid A. neglecta and the allohexaploid A. recta, very extended among germplasm banks and managers, is in the origin of some of the errors detected.

Keywords

Aegilops Chloroplast DNA markers Crop wild relatives Genetic resources management 

Supplementary material

10722_2016_364_MOESM1_ESM.pptx (264 kb)
Supplementary material 1 (PPTX 264 kb)
10722_2016_364_MOESM2_ESM.pptx (925 kb)
Supplementary material 2 (PPTX 924 kb)
10722_2016_364_MOESM3_ESM.pptx (208 kb)
Supplementary material 3 (PPTX 208 kb)
10722_2016_364_MOESM4_ESM.pptx (132 kb)
Supplementary material 4 (PPTX 131 kb)
10722_2016_364_MOESM5_ESM.docx (115 kb)
Supplementary material 5 (DOCX 115 kb)

References

  1. Badaeva ED, Amosova AV, Samatadze TE et al (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol 246:45–76CrossRefGoogle Scholar
  2. Badaeva ED, Dedkova OS, Zoshchuk SA et al (2011) Comparative analysis of the N-genome in diploid and polyploid Aegilops species. Chromosome Res 19:541–548CrossRefPubMedGoogle Scholar
  3. Bandou H, Rodriguez-Quijano M, Carrillo JM et al (2009) Morphological and genetic variation in Aegilops geniculata from Algeria. Plant Syst Evol 277:85–97CrossRefGoogle Scholar
  4. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797CrossRefPubMedCentralGoogle Scholar
  5. Chennaveeraiah M (1960) Karyomorphologic and cytotaxonomic studies in Aegilops. Acta Hort Gothoburg 23:85–178Google Scholar
  6. Cifuentes M (2007) Intergenomic pairing and formation of unreduced polen in wheat × Aegilops hybrids. Technical University of Madrid. http://oa.upm.es/1811/1/MARTA_CIFUENTES_OCHOA.pdf
  7. Dvorak J (1998) Genome analysis in the Triticum-Aegilops alliance. In: Proceedings of the 9th international wheat genetics symposium. Saskatoon, pp 8–11Google Scholar
  8. Feldman M, Levy AA (2012) Genome evolution due to allopolyploidization in wheat. Genetics 192:763–774CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRefPubMedPubMedCentralGoogle Scholar
  10. Haider N (2011) Chloroplast-specific universal primers and their uses in plant studies. Biol Plant 55:225–236CrossRefGoogle Scholar
  11. Haider N, Nabulsi I, MirAli N (2010) Comparison of the efficiency of A-PAGE and SDS-PAGE, ISSRs and RAPDs in resolving genetic relationships among Triticum and Aegilops species. Genet Resour Crop Evol 57:1023–1039CrossRefGoogle Scholar
  12. Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180CrossRefGoogle Scholar
  13. Hammer K, Morimoto Y (2011) Classifications of infraspecific variation in crop plants. In: Guarino L, Ramanatha RV, Goldberg E (eds) Collecting plant genetic diversity: technical guidelines, 2011 Update. http://cropgenebank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=665
  14. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6:e19254. doi:10.1371/journal.pone.0019254 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kihara H (1963) Interspecific relationship in Triticum and Aegilops. Seiken Ziho 15:1–12Google Scholar
  16. Kilian B, Mammen K, Millet E et al (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources Cereals. Springer, Berlin, pp 1–76. doi:10.1007/978-3-642-14228-4_1 CrossRefGoogle Scholar
  17. Kimber G, Feldman M (1987) Wild wheat. An introduction. Special Report 353, College of Agriculture, University of Missouri-ColumbiaGoogle Scholar
  18. Manzanero S, Vega JM, Houben A, Puertas MJ (2002) Characterization of the constriction with neocentric activity of 5RL chromosome in wheat. Chromosoma 111:228–235. doi:10.1007/s00412-002-0211-7 CrossRefPubMedGoogle Scholar
  19. Maxted N (2011) Aids to taxonomic identification In: Guarino L, Ramanatha RV, Goldberg E (eds) Collecting plant genetic diversity: technical guidelines. 2011 Update. http://cropgenebank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=390&Itemid=557
  20. Ogihara Y, Tsunewaki K (1988) Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor Appl Genet 76:321–332. doi:10.1007/BF00265331 CrossRefPubMedGoogle Scholar
  21. Resta P, Zhang HB, Dubcovsky J, Dvorak J (1996) The origins of the genomes of Triticum biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum (Poaceae) based on variation in repeated nucleotide sequences. Am J Bot 83:1556–1565CrossRefGoogle Scholar
  22. Schneider A, Molnar I, Molnar-Lang M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19CrossRefGoogle Scholar
  23. van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University Papers, vol 94–7. Agricultural University, WageningenGoogle Scholar
  24. Witcombe JR (1983) A guide to the species of Aegilops L.: their taxonomy, morphology and distribution. International Board for Plant Genetic Resources (IPGRI), RomeGoogle Scholar
  25. Yen Y, Kimber G (1992) Genomic relationships of N-genome Triticum species. Genome 35:962–966CrossRefGoogle Scholar
  26. Zaharieva M, Monneveux P (2006) Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its wild relatives in Europe. Crop Sci 46:512–527CrossRefGoogle Scholar
  27. Zaharieva M, Dimov A, Stankova P, David J, Monneveux P (2003) Morphological diversity and potential interest for wheat improvement of three Aegilops L. species from Bulgaria. Genet Resour Crop Evol 50:507–517CrossRefGoogle Scholar
  28. Zohary D, Feldman M (1962) Hybridization between amphidiploids and evolution of polyploids in wheat (AegilopsTriticum) group. Evolution 16:44–61CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Patricia Giraldo
    • 1
  • Magdalena Ruiz
    • 2
  • Marta Rodríguez-Quijano
    • 1
  • Elena Benavente
    • 1
  1. 1.Department of Biotechnology-Plant Biology, School of Agricultural EngineeringTechnical University of Madrid (UPM)MadridSpain
  2. 2.Plant Genetic Resources Centre (CRF)National Institute for Agricultural and Food Research and Technology (INIA)MadridSpain

Personalised recommendations