Skip to main content
Log in

Unravelling the ambiguous reproductive biology of Paspalum malacophyllum: a decades old story clarified

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

In a recent manuscript published by our group we analyzed the reproductive biology of the grass Paspalum malacophyllum by using traditional embryological techniques combined with current cytological and molecular methods. Our findings confirmed apparent contradictions regarding the reproductive behavior of P. malacophyllum from six independently published reports over the past six decades. Herein we summarize the main findings, conclusions, and validations of all previous studies, highlighting the need for multiple approaches to characterize reproductive systems when using apomictic plants in a breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acuña CA, Blount AR, Quesenberry KH, Hanna WW, Kenworthy KE (2007) Reproductive characterization of bahiagrass germplasm. Crop Sci 47:1711–1717

    Article  Google Scholar 

  • Acuña CA, Blount AR, Quesenberry KH, Kenworthy KE, Hanna WW (2009) Bahiagrass tetraploid germplasm: reproductive and agronomic characterization of segregating progeny. Crop Sci 49:581–588

    Article  Google Scholar 

  • Acuña CA, Blount AR, Quesenberry KH, Kenworthy KE, Hanna WW (2011) Tetraploid bahiagrass hybrids: breeding technique, genetic variability and proportion of heterotic hybrids. Euphytica 179:227–235

    Article  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Bashaw EC, Funk CR (1987) Apomictic grasses. In: Fehr WR (ed) Principles of cultivar development, vol 2., Crop speciesMacmillian Publishing Co., New York, pp 40–82

    Google Scholar 

  • Bashaw EC, Hovin AW, Holt EC (1970) Apomixis, its evolutionary significance and utilization in plant breeding. In: Norman MJT (ed) Proceedings of the XI international grasslands congress. University of Queensland Press, St. Lucia, pp 245–248

    Google Scholar 

  • Bennett HW (1953) Forage and pasture crops breeding. Dallisgrass (hybrids) and Johnsongrass sorghum hybrids. Miss Agr Expt Sta Ann Rpt 66:18–19

    Google Scholar 

  • Bennett HW, Bashaw EC (1960) An interspecific hybrid in Paspalum. J Hered 51:81–85

    Google Scholar 

  • Blount AR, Acuña CA (2009) Bahiagrass. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement series: forage crops. CRC Press, Boca Raton, pp 81–102

    Chapter  Google Scholar 

  • Brown WV, Emery WHP (1958) Apomixis in the Gramineae: Panicoideae. Am J Bot 45:253–263

    Article  Google Scholar 

  • Burson BL, Hussey MA (1998) Cytology of Paspalum malacophyllum and its relationship to P. jurgensii and P. dilatatum. Int J Plant Sci 159:153–159

    Article  Google Scholar 

  • Burson BL, Young BA (2001) Breeding and improvement of tropical grasses. In: Sotomayor-Ríos A, Pitman WD (eds) Tropical forage plants: development and use. CRC Press, Boca Raton, pp 59–79

    Google Scholar 

  • Burton GW (1940) A cytological study of some species in the genus Paspalum. J Agric Res 60:193–197

    Google Scholar 

  • Burton GW (1942) A cytological study of some species in the tribe Paniceae. Am J Bot 29:355–359

    Article  Google Scholar 

  • Burton GW (1982) Improved recurrent restricted phenotypic selection increases bahiagrass forage yields. Crop Sci 22:1058–1061

    Article  Google Scholar 

  • Burton GW, Gates RN, Gasho JG (1997) Response of Pensacola bahiagrass to rates of nitrogen, phosphorus and potassium fertilizers. Soil Crop Sci Soc Fla Proc 56:31–35

    Google Scholar 

  • Caponio I, Quarin CL (1987) El sistema genético de Paspalum simplex y de un híbrido interespecífico con P. dilatatum. Kurtziana 19:35–45

    Google Scholar 

  • Carman JG, Jamison M, Elliott E, Dwivedi KK, Naumova TN (2011) Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in sorghum ovules. BMC Plant Biol 11:9. doi:10.1186/1471-2229-11-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Cawdell-Smith AJ, Scrivener CJ, Bryden WL (2010) Staggers in horses grazing Paspalum infected with Claviceps paspali. Aust Vet J 88:393–395

    Article  CAS  PubMed  Google Scholar 

  • Chapman H, Bicknell R (2000) Recovery of a sexual and an apomictic hybrid from crosses between the facultative apomicts Hieracium caespitosum and H. praealtum. N Z J Ecol 24:81–85

    Google Scholar 

  • Gates RN, Quarin CL, Pedreira CGS (2004) Bahiagrass. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses. Agron Monogr 45. ASA, CSSA, SSSA, Madison, WI, USA, pp 651–680

  • Gould FW (1975) The grasses of Texas. Texas A&M University Press, College Station

    Google Scholar 

  • Grimanelli D, García M, Kaszas E, Perotti E, Leblanc O (2003) Heterochronic expression of sexual reproductive programs during apomictic development in Tripsacum. Genetics 165:1521–1531

    PubMed  PubMed Central  Google Scholar 

  • Hanna WW, Bashaw EC (1987) Apomixis: its identification and use in plant breeding. Crop Sci 27:1136–1139

    Article  Google Scholar 

  • Hanson AA, Carnahan HL (1956) Breeding perennial forage grasses. Technical bulletin 1145. United States Department of Agriculture, Washington

    Google Scholar 

  • Hojsgaard DH (2010) Caracterización del sistema genético y grado de conservación de la región genómica de la apomixis en el subgénero Anachyris de Paspalum. PhD Dissertation, Universidad Nacional del Nordeste, Ctes, Argentina

  • Hojsgaard DH, Schegg E, Valls JFM, Martínez EJ, Quarin CL (2008) Sexuality, apomixis, ploidy levels, and genomic relationships among four Paspalum species of the subgenus Anachyris (Poaceae). Flora 203:535–547

    Article  Google Scholar 

  • Hojsgaard DH, Honfi AI, Rua GH, Daviña JR (2009) Chromosome numbers and ploidy levels of Paspalum species from subtropical South America (Poaceae). Genet Resour Crop Evol 56:533–545

    Article  Google Scholar 

  • Hojsgaard DH, Martínez EJ, Quarin CL (2013) Competition between meiotic and apomictic pathways during ovule and seed development results in clonality. New Phytol 197:336–347

    Article  PubMed  Google Scholar 

  • Hojsgaard D, Greilhuber J, Pellino M, Paun O, Sharbel TF, Hörandl E (2014a) Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation. New Phytol 204:1000–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Hojsgaard D, Klatt S, Baier R, Carman JG, Hörandl E (2014b) Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit Rev Plant Sci 33:414–427

    Article  PubMed  PubMed Central  Google Scholar 

  • Honfi AI, Quarin CL, Valls JFM (1990) Estudios cariológicos en gramíneas sudamericanas. Darwiniana 30:87–90

    Google Scholar 

  • Hörandl E (2008) Evolutionary implications of self-compatibility and reproductive fitness in the apomictic Ranunculus auricomus polyploid complex (Ranunculaceae). Int J Plant Sci 169:1219–1228

    Article  PubMed  PubMed Central  Google Scholar 

  • Hörandl E, Paun O (2007) Patterns and sources of genetic diversity in apomictic plants: implications forevolutionary potentials. In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel T (eds) Apomixis: evolution, Mechanisms and Perspectives. Gantner Verlag, Ruggel, pp 169–194

    Google Scholar 

  • Kojima A, Nagato J (1992) Diplosporous embryo sac formation and the degree of diplospory in Allium tuberosum. Sex Plant Reprod 5:72–78

    Article  Google Scholar 

  • Krejčíková J, Sudová R, Lučanová M, Trávníček P, Urfus T, Vít P, Weiss-Schneeweiss H, Kolano B, Oberlander K, Dreyer LL, Suda J (2013) High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of Oxalis in the Greater Cape Floristic Region. Ann Bot 111:641–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li D, Yan L, Huang H (2015) The microgeographical patterns of morphological and molecular variation of a mixed ploidy population in the species complex Actinidia chinensis. PLoS One 10:e0117596. doi:10.1371/journal.pone.0117596

    Article  PubMed  PubMed Central  Google Scholar 

  • Matzk F, Meister A, Schubert I (2000) An efficient screen for the reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108

    Article  CAS  PubMed  Google Scholar 

  • Miles JW (2007) Apomixis for cultivar development in tropical forage grasses. Crop Sci 47:238–249

    Article  Google Scholar 

  • Morrone O, Denham SS, Aliscioni SS, Zuloaga FO (2000) Revisión de las especies de Paspalum (Panicoideae: Paniceae), subgénero Anachyris. Candollea 55:105–135

    Google Scholar 

  • Morrone O, Aagesen L, Scataglini MA, Salariato DL, Denham SS, Chemisquy MA, Sede SM, Giussani LM, Kellogg EA, Zuloaga FO (2012) Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification. Cladistics 28:333–356

    Article  Google Scholar 

  • Naumova TN, Hayward MD, Wagenvoort M (1999) Apomixis and sexuality in diploid and tetraploid accessions of Brachiaria decumbens. Sex Plant Reprod 12:43–52

    Article  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 475–518

    Chapter  Google Scholar 

  • Oram RN (1990) Register of Australian herbage plant cultivars, 3rd edn. CSIRO Publications, Parchment Press, Melbourne

    Google Scholar 

  • Ozias-Akins P, van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Ann Rev Genet 41:509–537

    Article  CAS  PubMed  Google Scholar 

  • Polegri L, Calderini O, Arcioni S, Pupilli F (2010) Specific expression of apomixis linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers. J Exp Bot 61:1869–1883

    Article  CAS  PubMed  Google Scholar 

  • Pozzobon MT, Carvalho Machado AC, Vaio M, Valls JFM, Souza Peñaloza AP, Santos S, Côrtes AL, Rua GH (2008) Cytogenetic analyses in Paspalum L. reveal new diploid species and accessions. Ciência Rural 38:1292–1299

    Article  Google Scholar 

  • Pullaiah T, Febulaus GNV (2000) Embryology and apomixis in grasses. Regency Publications, New Delhi

    Google Scholar 

  • Quarin CL, Norrmann GA (1990) Interspecific hybrids between five Paspalum species. Bot Gaz 151:366–369

    Article  Google Scholar 

  • Quarin CL, Espinoza F, Martinez EJ, Pessino SC, Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 13:243–249

    Article  Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–85

    CAS  Google Scholar 

  • Scataglini MA, Zuloaga FO, Giussani LM, Denham SS, Morrone O (2014) Phylogeny of New World Paspalum (Poaceae, Panicoideae, Paspaleae) based on plastid and nuclear markers. Plant Syst Evol 300:1051–1070

    Article  Google Scholar 

  • Sharbel TF, Voigt M-L, Corral JM, Galla G, Kumlehn J, Klukas C, Schreiber F, Vogel H, Rotter R (2010) Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. Plant Cell 22:655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens JL (1941) Ribbed paspalum, Paspalum malacophyllum. J Am Soc Agron 3:855–857

    Article  Google Scholar 

  • Warmke HE (1954) Apomixis in Panicum maximum. Am J Bot 41:5–11

    Article  Google Scholar 

  • Zilli AL, Hojsgaard DH, Brugnoli AE, Acuña CA, Honfi AI, Urbani MH, Quarin CL, Martínez EJ (2014) Genetic relationship among Paspalum species of the subgenus Anachyris: taxonomic and evolutionary implications. Flora 209:604–612

    Article  Google Scholar 

  • Zuloaga FO, Morrone O (2005) Revisión de las especies de Paspalum para América del Sur Austral (Argentina, Bolivia, Sur de Brasil, Chile, Paraguay y Uruguay). Monogr Syst Bot Mo Bot Gard 102:1–297

    Google Scholar 

Download references

Acknowledgments

We thank Professor Carlos Acuña, University of Northeast, Corrientes, Argentina, and two anonymous reviewers for their critical comments and suggestions on a preliminary version of the manuscript. This work was funded by the German Research Foundation (DFG Project HO 5462/1-1 to D.H.H.) and the National Council for Scientific and Technological Research (CONICET Project 20150202-167 to E.J.M.), in the framework of DFG-CONICET international cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. Hojsgaard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hojsgaard, D.H., Burson, B.L., Quarin, C.L. et al. Unravelling the ambiguous reproductive biology of Paspalum malacophyllum: a decades old story clarified. Genet Resour Crop Evol 63, 1063–1071 (2016). https://doi.org/10.1007/s10722-015-0303-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0303-x

Keywords